
forallx : SFU
An introduction to formal logic

P.D. Magnus
University at Albany, State University of New York

Thomas Donaldson
Simon Fraser University

Bruno Guindon
Simon Fraser University

P.D. Magnus would like to thank the people who made this project possible.
Notable among these are Cristyn Magnus, who read many early drafts; Aaron
Schiller, who was an early adopter and provided considerable, helpful feed-
back; and Bin Kang, Craig Erb, Nathan Carter, Wes McMichael, Selva Samuel,
Dave Krueger, Brandon Lee, Toan Tran, Marcus Adams, Matthew Brown, and
the students of Introduction to Logic, who detected various errors in previous
versions of the book.

Thomas Donaldson and Bruno Guindon, who modified the original version of
forallx , would like to thank the original author P.D. Magnus for his act of
generosity in making forallx available to everyone. Donaldson and Guin-
don would especially like to thank Kesavan Thanagopal and Celia Gentle for
their valuable feedback, meticulous proofreading, and expert typesetting in the
development of forallx : SFU. A very special mention goes out to Celia for
drafting up most, and typesetting all, solutions to the exercises. Donaldson
and Guindon would also like to thank Transforming Inquiry into Teaching +
Learning (TILT) at SFU for awarding them a grant that made this project pos-
sible.

© 2005–2026 by P.D. Magnus, Thomas Donaldson, and Bruno Guindon. Some
rights reserved.

You are free to copy this book, to distribute it, to display it, and to make derivative works,
under the following conditions: (a) Attribution. You must give the authors credit. (b) Share
Alike. If you alter, transform, or build upon this work, you may distribute the resulting work
only under a license identical to this one. For any reuse or distribution, you must make clear
to others the license terms of this work. Any of these conditions can be waived if you get
permission from the copyright holder. Your fair use and other rights are in no way affected by
the above. This is a human-readable summary of the full license, which is available on-line at
http://creativecommons.org/licenses/by/4.0/

Typesetting was carried out entirely in LATEX2ε. The style for typesetting proofs
is based on fitch.sty (v0.4) by Peter Selinger, University of Ottawa.

This copy of forallx : SFU is current as of January 12, 2026.

http://creativecommons.org/licenses/by/4.0/

forallx : SFU contents

1 What is logic? 6
1.1 Statements . 7
1.2 Inferences . 8
1.3 Evaluating inferences . 8
1.4 Deductive validity . 9
1.5 Arguments with several steps . 11
1.6 Other logical notions . 12
1.7 Validity and logical form . 15
Practice exercises . 16

I Truth-functional logic 18

2 Atomic sentences and the Boolean connectives 19
2.1 Atomic sentences . 19
2.2 Connectives . 24
2.3 Parentheses matter . 30
Practice exercises . 32

3 Truth tables 34
3.1 Decomposing a statement . 34
3.2 Truth-functional connectives . 35
3.3 Complete truth tables . 36
3.4 Using truth tables . 39
Practice exercises . 43

4 Conditionals 45
4.1 Introducing the conditional . 45
4.2 Introducing the biconditional . 47
4.3 The truth-functional completeness of the Boolean connectives . 48
4.4 Unless . 51
Practice exercises . 53

5 Introducing proofs 56
5.1 Rules for conjunction . 58

3

4 FORALLx : SFU CONTENTS

5.2 Rules for disjunction . 60
5.3 A rule for conditionals . 62
5.4 Rules for identity . 63
5.5 Three more complex examples 64
Practice exercises . 71

6 Proofs involving conditionals and negation 74
6.1 Conditionals . 74
6.2 Biconditional . 77
6.3 Negation . 78
6.4 Russian Doll proofs . 80
6.5 Proving tautologies and tautological equivalences 81
Practice exercises . 84

II First-order logic 88

7 Introducing the quantifiers 89
7.1 Introduction . 89
7.2 The quantifiers . 91
7.3 Universe of discourse . 92
7.4 Translating to FOL . 93
7.5 Picking a UD . 96
7.6 Sentences of FOL . 97
7.7 Satisfaction . 98
Practice exercises . 101

8 Proofs involving universal quantifiers 108
8.1 Terminology . 108
8.2 Universal elimination . 110
8.3 Universal introduction . 110
Practice exercises . 113

9 Proofs involving existential quantifiers 116
9.1 Existential introduction . 117
9.2 Existential elimination . 117
9.3 Quantifier equivalences . 119
9.4 Soundness and completeness for FOL 122
9.5 Proving invalidity . 125
Practice exercises . 127

10 Multiple quantifiers 130
10.1 The four Aristotelian forms . 130
10.2 Multiple uses of a single quantifier 131
10.3 Mixed quantifiers . 132
10.4 Order of quantifiers and variables 133
10.5 Proofs using multiple quantifiers 134
Practice exercises . 139

FORALLx : SFU CONTENTS 5

11 Numerical quantification 141
11.1 Numerical statements . 141
11.2 Definite descriptions . 143
11.3 Formal proofs using numerical quantification 145
Practice exercises . 150

12 Quick reference 152

III Solutions 156

13 Solutions to exercises 157
13.1 Chapter 1 Solutions . 157
13.2 Chapter 2 Solutions . 160
13.3 Chapter 3 Solutions . 162
13.4 Chapter 4 Solutions . 166
13.5 Chapter 5 Solutions . 172
13.6 Chapter 6 Solutions . 176
13.7 Chapter 7 Solutions . 184
13.8 Chapter 8 Solutions . 192
13.9 Chapter 9 Solutions . 196
13.10Chapter 10 Solutions . 202
13.11Chapter 11 Solutions . 206

Chapter 1

What is logic?

Logic is the business of evaluating arguments, sorting good ones from bad
ones. In everyday language, we sometimes use the word ‘argument’ to refer
to belligerent shouting matches. If you and a friend have an argument in this
sense, things are not going well between the two of you.

In logic, we are not interested in the teeth-gnashing, hair-pulling kind of ar-
gument. A logical argument is structured to give someone a reason to believe
some conclusion. Here is one such argument:

(1) It is raining heavily.

(2) If it’s raining and you do not take an umbrella, you will get soaked.

.˙. You should take an umbrella.

The three dots on the third line of the argument mean ‘Therefore’ and they
indicate that the final sentence is the conclusion of the argument. The other
sentences are premises of the argument. If you believe the premises and the
argument is a good one, then the argument provides you with a reason to
believe the conclusion.

In this chapter, we will begin a discussion of the structure of arguments. We
will see that an argument is composed of one or more inferences, and that an
inference is composed of statements. We will also discuss some basic logical
notions.

6

ch. 1 what is logic? 7

1.1 Statements

In logic, we are only interested in sentences that can appear in arguments. So
we will say that a statement is a sentence (or part of a sentence) that is either
true or false.

Questions ‘Are you sleepy yet?’ is a sentence, but it is not a statement.
Suppose you answer the question, ‘I am not sleepy.’ This is either true or false,
and so it is a statement. Generally, questions will not count as statements, but
answers will.

Imperatives Commands are often phrased as imperatives like ‘Wake up!’,
‘Sit up straight’, and so on. These are sentences, but they are not statements.

Exclamations ‘Ouch!’ is not a statement, because it is neither true nor false.
We will treat ‘Ouch, I hurt my toe!’ as meaning the same thing as ‘I hurt my
toe.’ The ‘ouch’ does not add anything that could be true or false.

You should not confuse the distinction between statements and other sentences
with the distinction between fact and opinion. Often, sentences in logic will
express things that would count as facts—such as ‘Kierkegaard was a hunch-
back’ or ‘Kierkegaard liked almonds.’ They can also express things that you
might think of as matters of opinion—such as, ‘Almonds are yummy.’

We say that a statement is a sentence ‘or part of a sentence’ that can be true or
false, because it often happens that statements can be combined to make larger
statements. Consider, for example, the following statement:

Vancouver is in British Columbia and British Columbia is in Canada.

In this example, the two statements ‘Vancouver is in British Columbia’ and
‘British Columbia is in Canada’ have been combined using the word ‘and’ to
make a single, larger statement. This point—that statements can be joined
together to make bigger statements—will be very important later on in the
book.

8 forallx : SFU

1.2 Inferences

We can define an inference as a series of statements. The statements at the
beginning of the series are premises. The final statement in the series is the
conclusion. The inference is supposed to justify the conclusion, using the
premises as starting points.

When people give inferences, they often flag the premises using phrases like
‘since’, ‘because’, and ‘given that’. And they often flag the conclusion using
phrases like ‘therefore’ and ‘so’. Words like these are a clue to the structure
of the writer’s line of reasoning, especially if—in the argument as given—the
conclusion comes at the beginning or in the middle of the argument.

premise indicators: since, because, given that

conclusion indicators: therefore, hence, thus, then, so

1.3 Evaluating inferences

Consider the inference that you should take an umbrella (on p. 6, above). If
premise (1) is false—if it is sunny outside—then the inference gives you no
reason to carry an umbrella.

Premise (2) might also be false. Perhaps you wear a rain poncho that keeps
you dry even when you walk in the rain without an umbrella. Perhaps you
will keep to covered walkways.

But suppose for a moment that both the premises are true. It is raining. You do
not own a rain poncho. You need to go places where there are no covered walk-
ways. Now does the inference show you that you should take an umbrella?
Not necessarily. Perhaps you enjoy walking in the rain, and you would like to
get soaked. In that case, even though the premises were true, the conclusion
would be false.

For any inference, there are two ways that it could be weak. First, one or more
of the premises might be false. An inference gives you a reason to believe its
conclusion only if you believe its premises. Second, the premises might not be
connected to the conclusion in the right way: it might be that, even supposing
the premises to be true, they don’t support the conclusion.

Consider another example:

You are reading this book.
This is a logic book.

.˙. You are a logic student.

ch. 1 what is logic? 9

This is not a terrible inference. Most people who read this book are logic
students. Yet, it is possible for someone besides a logic student to read this book.
If your roommate picked up the book and thumbed through it, they would not
immediately become a logic student. So the premises of this inference, even
though they are true, do not guarantee the truth of the conclusion. Its logical
form is less than perfect.

An inference that has no weakness of the second kind would have perfect
logical form. If its premises were true, then its conclusion would necessarily be
true. We call such an inference ‘deductively valid’ or just ‘valid.’

Even though we might count the inference above as a good argument in some
sense, it is not valid; that is, it is ‘invalid’. One important task of logic is to sort
valid inferences from invalid inferences.

It is important, when studying logic, to remember that the word ‘valid’ is used
in this very specific way. It is not just an unspecific term of approval!

1.4 Deductive validity

An inference is deductively valid, or just valid for short, if and only if there is
no possible situation in which the premises are true and the conclusion is false.

The crucial thing about a valid inference is that it is impossible for the premises
to be true at the same time that the conclusion is false. Consider this example:

Oranges are either fruits or musical instruments.
Oranges are not fruits.

.˙. Oranges are musical instruments.

The conclusion of this inference is ridiculous. Nevertheless, it follows validly
from the premises. This is a valid argument. If both premises were true, then
the conclusion would necessarily be true.

This shows that a deductively valid inference does not need to have true
premises or a true conclusion. Conversely, having true premises and a true
conclusion is not enough to make an inference valid.

10 forallx : SFU

Consider this example:

London is in England.
Beijing is in China.

.˙. Paris is in France.

The premises and conclusion of this inference are, as a matter of fact, all
true. This is a terrible inference, however, because the premises have nothing
to do with the conclusion. Imagine what would happen if Paris declared
independence from the rest of France. Then the conclusion would be false,
even though the premises would both still be true. Thus, it is logically possible
for the premises of this inference to be true and the conclusion false. The
argument is invalid.

The important thing to remember is that validity is not about the actual truth
or falsity of the statements in the inference. Instead, it is about the form of
the argument: The truth of the premises is incompatible with the falsity of the
conclusion.

Inductive inferences

There can be good arguments which nevertheless fail to be deductively valid.
Consider this one:

In January 1997, it rained in San Diego.
In January 1998, it rained in San Diego.
In January 1999, it rained in San Diego.

.˙. It rains every January in San Diego.

This is an inductive inference, because it generalizes from many cases to a
conclusion about all cases.

Certainly, the inference could be made stronger by adding additional premises:
In January 2000, it rained in San Diego. In January 2001 . . . and so on. Re-
gardless of how many premises we add, however, the inference will still not be
deductively valid. It is possible, although unlikely, that it will fail to rain next
January in San Diego. Moreover, we know that the weather can be fickle. No
amount of evidence should convince us that it rains there every January. Who
is to say that some year will not be a freakish year in which there is no rain in
January in San Diego? All it takes to make the conclusion of the inference false
is just one instance of a rainless January.

Inductive inferences, even good ones, are not deductively valid. We will not
be interested in inductive inferences in this book.

ch. 1 what is logic? 11

Abductive inferences

Another kind of arguments that can be good but are not deductively valid
are abductive arguments, or inferences to the best explanation. Consider the
following inference:

The human eye is incredibly complex.
The only possible explanation for this level of complexity is that the
human eye was created by a supernatural divine creator.

.˙. God must exist.

The way abductive arguments work is by first starting with some putative
phenomenon that requires explanation—in this case, the complexity of the
human eye—and then offering what is taken to be the best explanation of
that phenomenon—in this case, that it is the product of a supernatural creator.
The idea is that if the best explanation for some phenomenon or observation
requires us to posit certain things, then we are justified to infer that these things
exist.

Of course, whether an abductive inference is a good one depends in part on
whether we have got the right observation (or whether the phenomenon in
question really calls for explanation) and whether the putative explanation
advanced is in fact the best one. You can decide for yourself whether the ab-
ductive argument above is in fact a good one, but we will also not be interested
in abductive inferences in this book.

1.5 Arguments with several steps

Consider these two inferences:

If I left my keys at the office, Sam would have told me so.
Sam didn’t tell me that I left my keys at the office.

.˙. I didn’t leave my keys at the office.

I left my keys either in the car or at the office.
I didn’t leave my keys at the office.

.˙. I left my keys in the car.

Notice that the conclusion of the first inference is also a premise of the second.
We can join these two inferences into a single argument with two steps. This
two-step argument can be written out like this:

12 forallx : SFU

(1) If I left my keys at the office, Sam would have told me so. (Premise)
(2) Sam didn’t tell me that I left my keys at the office. (Premise)
(3) I didn’t leave my keys at the office. (From 1 and 2)
(4) I left my keys either in the car or at the office. (Premise)
(5) I left my keys in the car. (From 3 and 4)

More generally, an argument is either a single inference, or a number of in-
ferences combined together in sequence in the manner just described. An
inference can also be called a ‘one-step argument’; an argument consisting of
more than one inference can be called a ‘multi-step argument’.

When evaluating multi-step arguments, it is usually a good strategy to break
the argument into its component steps, and to evaluate them separately.

1.6 Other logical notions

In addition to deductive validity, we will be interested in some other logical
concepts.

Truth-values

As we mentioned in the previous section, a statement is a sentence (or part
of a sentence) that can either be true or false. True or false are said to be the
truth-value of a statement. So, we could have said instead that statements are
sentences (or parts of sentences) that can have truth-values.

Logical truth

In considering arguments formally, we care about what would be true if the
premises were true. Generally, we are not concerned with the actual truth-
value of any particular sentences—whether they are actually true or false. Yet
there are some sentences that must be true, just as a matter of logic.

Consider these sentences:

1. It is raining.
2. Either it is raining, or it is not.
3. It is both raining and not raining.

In order to know if sentence 1 is true, you would need to look outside or
check the weather channel. Logically speaking, it might be either true or false.
Sentences like this are called contingent sentences.

ch. 1 what is logic? 13

Sentence 2 is different. You do not need to look outside to know that it is true.
Regardless of what the weather is like, it is either raining or not. This sentence
is logically true; it is true merely as a matter of logic, regardless of what the
world is actually like. As we shall see in chapter 3, this particular kind of
logical truth is called a tautology. But we must be careful here, since as we
will see in subsequent chapters, not all logical truths are tautologies.

You do not need to check the weather to know about sentence 3 either. It must
be false, simply as a matter of logic. It might be raining here and not raining
across town, it might be raining now but stop raining even as you read this, but
it is impossible for it to be both raining and not raining here at this moment.
The third sentence is logically false; it is false regardless of what the world is like.
A logically false sentence is called a logical falsehood. Again, as we will see
in chapter 3, this particular kind of logical falsehood is called a ‘contradiction’,
or a ‘tautological falsehood’.

To be precise, we can define a contingent sentence as a sentence that is neither
a logical truth nor a logical falsehood.

A sentence might always be true and still be contingent. For instance, if there
never were a time when the universe contained fewer than seven things, then
the sentence ‘At least seven things exist’ would always be true. Yet the sentence
is contingent; its truth is not a matter of logic. It is possible to conceive of a
world in which there are fewer than seven things. The important question is
whether the sentence must be true, just on account of logic.

Logical equivalence

We can also ask about the logical relations between two sentences. For example:

John went to the store after he washed the dishes.
John washed the dishes before he went to the store.

These two sentences are both contingent, since John might not have gone to
the store or washed the dishes at all. Yet they must have the same truth-value.
If either of the sentences is true, then they both are; if either of the sentences
is false, then they both are. When two sentences necessarily have the same
truth-value, we say that they are logically equivalent.

14 forallx : SFU

Consistency

Consider these two sentences:

B1 My only brother is taller than I am.
B2 My only brother is shorter than I am.

Logic alone cannot tell us which, if either, of these sentences is true. Yet we can
say that if the first sentence (B1) is true, then the second sentence (B2) must be
false. And if B2 is true, then B1 must be false. It cannot be the case that both of
these sentences are true.

If a set of sentences could not all be true at the same time, like B1—B2, they are
said to be inconsistent. Otherwise, they are consistent.

We can ask about the consistency of any number of sentences. For example,
consider the following list of sentences:

G1 There are at least four giraffes at the wild animal park.
G2 There are exactly seven gorillas at the wild animal park.
G3 There are not more than two martians at the wild animal park.
G4 Every giraffe at the wild animal park is a martian.

G1 and G4 together imply that there are at least four martian giraffes at the
park. This conflicts with G3, which implies that there are no more than two
martian giraffes there. So the set of sentences G1—G4 is inconsistent. Notice
that the inconsistency has nothing at all to do with G2. G2 just happens to be
part of an inconsistent set.

Sometimes, people will say that an inconsistent set of sentences ‘contains a
contradiction.’ By this, they mean that it would be logically impossible for all
of the sentences to be true at once. Notice that if the set of sentences contains at
least one sentence that is a logical falsehood, then the set would automatically
be inconsistent since it would be logically impossible for all of the sentences in
that set to be true at the same time. However, even if the set of sentences does
not contain a logical falsehood, this does not mean that the set is automatically
consistent—such a set may or may not be consistent. Indeed, if the set contains
at least two contingent sentences, then it could be inconsistent. For instance,
the set containing the contingent sentences “it is raining” and “it is not raining”
is inconsistent since it is logically impossible for both these sentences to be true
at the same time. On the other hand, if all the sentences in a set are logical
truths, then that set would automatically be consistent.

ch. 1 what is logic? 15

1.7 Validity and logical form

Consider the following three inferences:

Every even number is the sum of two prime numbers.
146 is an even number.

.˙. 146 is the sum of two prime numbers.

Every frog is an amphibian.
Philip is a frog.

.˙. Philip is an amphibian.

Every alkane is a hydrocarbon.
Butane is an alkane.

.˙. Butane is a hydrocarbon.

These three arguments have something in common—a shared structure, or a
shared form. We might put it like this:

Every A is a B.
x is an A.

.˙. x is a B.

I hope you can see that every argument with this form is valid. This means that
you can tell that an argument is valid by noticing that it has this form—even
if you know nothing about the particular subject matter of the inference. You
don’t need to know anything about chemistry to know that the above argument
about butane is valid.

The logical structure of an inference is not always easy to discern when the
inference is written in a natural language like English (or Mandarin, or French,
or whatever). For this reason, when we study logic we use ‘formal languages’
instead. When evaluating an inference written out in English, a logician will
often ‘translate’ the inference into a formal language, to get a better under-
standing of its structure.

16 forallx : SFU

Summary of logical notions

▷ An inference is (deductively) valid if it is impossible for the premises to
be true and the conclusion false; it is invalid otherwise.

▷ A logical truth is a sentence that must be true, as a matter of logic.

▷ A tautology is a particular kind of logical truth.

▷ A logical falsehood is a sentence that must be false, as a matter of logic.

▷ A contradiction is a particular kind of logical falsehood.

▷ A contingent sentence is neither a logical truth nor logical falsehood.

▷ Two sentences are logically equivalent if they necessarily have the same
truth-value.

▷ A set of sentences is consistent if it is logically possible for all the mem-
bers of the set to be true at the same time; it is inconsistent otherwise.

Practice exercises

Part A Which of the following are ‘statements’ in the logical sense?

1. England is smaller than China.
2. Greenland is south of Jerusalem.
3. Is New Jersey east of Wisconsin?
4. The atomic number of helium is 2.
5. The atomic number of helium is π.
6. I hate overcooked noodles.
7. Blech! Overcooked noodles!
8. Overcooked noodles are disgusting.
9. Take your time.

10. This is the last question.

Part B For each of the following: Is it a logical truth, a logical falsehood, or a
contingent statement?

1. Caesar crossed the Rubicon.
2. Someone once crossed the Rubicon.
3. No one has ever crossed the Rubicon.
4. If Caesar crossed the Rubicon, then someone has.
5. Even though Caesar crossed the Rubicon, no one has ever crossed the

Rubicon.
6. If anyone has ever crossed the Rubicon, it was Caesar.

ch. 1 what is logic? 17

Part C Look back at the sentences G1—G4 on p. 14, and consider each of the
following sets of sentences. Which are consistent? Which are inconsistent?

1. G2, G3, and G4
2. G1, G3, and G4
3. G1, G2, and G4
4. G1, G2, and G3

Part D Which of the following is possible? If it is possible, give an example. If
it is not possible, explain why.

1. A valid inference that has one false premise and one true premise
2. A valid inference that has a false conclusion
3. A valid inference, the conclusion of which is a logical falshood
4. An invalid inference, the conclusion of which is a tautology
5. A logical truth that is contingent
6. Two logically equivalent sentences, both of which are logical truths
7. Two logically equivalent sentences, one of which is a logical truth and

one of which is contingent
8. Two logically equivalent sentences that together are an inconsistent set
9. A consistent set of sentences that contains a contradiction

10. An inconsistent set of sentences that contains a tautology

Part E Look at the following passage. How many inferences can you find?
Which of these inferences are valid?

Ashni told me that she only sees Ben once or twice a year, so
they must live far apart. They used to hang out so often. It’s sad,
really. Anyway, Ashni and Ben don’t both live in New York. So
since Ashni lives in New York, Ben doesn’t.

Part I

Truth-functional logic

18

Chapter 2

Atomic sentences and the
Boolean connectives

This chapter and the next together introduce a logical language called ‘TFL’. It is
a version of truth-functional logic which is expressed in a fragment of first-order
logic (FOL) and focuses on sentences whose truth or falsity solely depends on
the truth or falsity of their most basic parts.

2.1 Atomic sentences

We begin by considering how to construct atomic sentences in TFL, which corre-
spond to some of the most basic statements we can make in natural languages
like English. Consider the following basic English sentence:

1. Ashni is tall.

This sentence is composed of two parts: a name (‘Ashni’) and a verb phrase
or predicate ‘is tall’. We can say that the verb phrase ‘is tall’ is predicating the
property of tallness to Ashni.

In TFL, atomic sentences are also composed of two parts: First, we have
individual constants , which are simple terms and are the TFL analogue
to names in English. Second, we have predicates, which are the TFL analogue
to verb phrases or predicates in English, and are used to refer to properties of
objects or relations between them. In TFL, we usually use uppercase letters
to represent predicates, and lowercase letters to represent names of objects.
(There are some exceptions to this rule, as we will see below.) This convention
helps distinguish symbols or letters that express predicates from those that

19

20 forallx : SFU

name objects. For example, we might decide to use the uppercase letter ‘T’ to
stand for the predicate ‘is tall’ and the lowercase letter ‘a’ to stand for the name
‘Ashni’, in which case we could translate 1 above into TFL in the following
way:

2. Ta

We used ‘T’ and ‘a’ as letters to represent the predicate ‘is tall’ and the name
‘Ashni’ respectively, because they are the first letters of the English predicate
(‘is tall’) and name (‘Ashni’). This often helps with remembering the meanings
of the symbols (i.e., the letters) used in TFL. But we could have used different
letters, as long as we take care to explain what these symbols mean. For
example, we could have offered the following symbolization key:

Bx: x is tall
m: Ashni

We could have then translated sentence 1 above in the following way:

3. Bm

Admittedly, it is a bit odd to translate 1 into 3 rather than into 2. But as long
as we have an adequate symbolization key—i.e., a list of symbols used in the
translation along with their meanings—there is no risk of confusion. Again,
consider the following sentence:

4. Ben lives in Japan.

Now consider the following symbolization key:

Lx: x lives in Japan
b: Ben

We are now in a position to translate 4 into TFL:

5. Lb

Not all basic English sentences lend themselves so easily to this method of
translation. Consider the following sentence:

6. It is raining outside.

ch. 2 atomic sentences and the boolean connectives 21

Like 1 and 4, 6 contains a predicate: ‘is raining’. Unlike 1 and 4, however, it
does not contain a name. So how are we supposed to translate 6 into TFL?
Here, we are going to allow ourselves a certain amount of leeway. We can treat
‘outside’ as the name of a location. Then, with the following symbolization
key:

Rx: x is raining
o: outside

we can translate 6 into TFL in the following way:

7. Ro

Technically, 7 says ‘Outside is raining’, which isn’t entirely grammatical, but
we will allow it to stand for an adequate translation of 6.

There are only twenty-six letters in the alphabet, but we never need run out
of letters for individual constants and predicates, because when necessary we
can use the same letter to symbolize different constants and predicates by
adding a subscript, a small number written after the letter. We could have a
symbolization key that looks like this:

P1x: x is tall
P2x: x lives in Japan
P3x: x is raining

a1: Ashni
a2: Ben
a3: outside

Before we move on to section 2.2 and discuss the ways in which we can combine
atomic sentences in TFL to build complex sentences, a few more points are in
order.

First, one way in which TFL differs from natural languages like English has
to do with the way individual constants are used in TFL to name objects. In
a language like English, it is perfectly acceptable for more than one person to
share the same name. In TFL, however, we insist that no individual constant
refers to more than one object. We also insist that individual constants actually
refer to existing objects. It is perfectly fine, however, if some object has more
than one name (i.e., if two individual constants refer to the same object), or if
some objects have no name.

Second, we said earlier that we can use lowercase letters as individual con-
stants. But we should qualify this here. We will exclude among the lowercase

22 forallx : SFU

letters that we can use as individual constants the last three letters of the al-
phabet: ‘x’, ‘y’, ‘z’. We will reserve these for chapter 7 when we introduce
quantification and use them as variables.

Third, consider again the predicate symbol used to express ‘lives in Japan’ in
sentence 4. In order to make an atomic sentence out of ‘L’, all we did was
proceed it with one individual constant ‘b’. That is because the arity of the
predicate ‘L’ is one. The arity of a predicate is simply the number of argument
places that need to be filled by terms in order for the resulting expression to be
an atomic sentence. So, ‘L’ is a unary predicate: it has only one argument place
(i.e., one placeholder) for terms. This is something we determined implicitly
when we settled on our symbolization key used to translate sentence 4. But
we could have made a different choice. Notice that the sentence ‘Ben lives in
Japan’ expresses a relation between two things, namely, Ben and Japan. So, in
translating sentence 4, we could have developed a symbolization key which
treats ‘lives in’ as a binary relation, and added an individual constant to name
Japan:

Lxy: x lives in y
b: Ben
j: Japan

The translation would be:

8. Lbj

In this course, we will focus on unary predicates and binary relations only, but
TFL can also deal with ternary (arity of 3) and quaternary (arity of 4) relations
(or any n-ary relation, really). Consider sentence:

9. Louise is sitting between Farouk and Magda.

Here, the predicate ‘is sitting between’ relates three objects, namely Louise,
Farouk, and Magda. Given a proper symbolization key, we might translate the
sentence into TFL thusly:

10. Bl f m

Or consider the sentence:

11. Talia is in front of June, Desmond, and Ellie.

ch. 2 atomic sentences and the boolean connectives 23

Here, we can treat ‘is in front of’ as a quaternary relation between Talia, June,
Desmond, and Ellie. Again, given a proper symbolization key, we might
translate the sentence into TFL thusly:

12. Ftjde

An atomic sentence, then, is any n-ary predicate followed by n terms.

Fourth, you will notice that the predicate symbols (i.e., the uppercase letters)
used in sentences 2, 3, 5, 7, 8, 10 and 12 all precede their constants. This way
of writing out sentences in TFL uses what is called ‘prefix notation’. For the
most part, we will stick with this convention and use prefix notation. But we
will make an exception with one binary relation: the relation of identity. In
fact, we will make three exceptions with regards to this relation. First, we
will use ‘=’ rather than an uppercase letter to express the identity relation
in TFL. The reason for this should be obvious: we are already familiar with
this symbol and its meaning. Second, when we want to translate identity
statements—statements like ‘Samuel Clemens is Mark Twain’ or ‘2 is identical
to 1’—we shall use what is called ‘infix notation’ instead of prefix notion.
Again, the reason for this obvious: we are already familiar with expressions
like ‘a = b’ in a way that makes ‘= ab’ look a bit odd. Third, we will exclusively
use ‘=’ to express the identity relation. So, if we want to make an identity claim
in TFL, we will use ‘=’. Given a proper symbolization key, the sentences above
could be translated respectively into TFL thusly:

13. c = t
14. 2 = 1

Sentence 14 leads to the final point. Earlier we said that we will use lowercase
letters (except for ‘x’, ‘y’, and ‘z’) as individual constants. The only exception
will be when we want to make certain kinds of mathematical statements, like
statements in arithmetic. There, we will allow ourselves to use the Hindu-
Arabic numerals (i.e., 1, 2, 3, and so on) as individual constants to refer to the
natural numbers.

24 forallx : SFU

2.2 Connectives

Logical connectives are used to build complex sentences from atomic compo-
nents. There are five logical connectives in TFL. This table summarizes them.

symbol what it is called what it means
¬ negation ‘It is not the case that. . .’
∧ conjunction ‘Both. . . and . . .’
∨ disjunction ‘Either. . . or . . .’
→ conditional ‘If . . . then . . .’
↔ biconditional ‘. . . if and only if . . .’

In this chapter, we will discuss negation, conjunction, and disjunction. These
three connectives are called the ‘Boolean connectives’, because the first person
to give them a systematic study was 19th century British mathematician and
logician George Boole. We will discuss conditionals and biconditionals in a
later chapter.

Negation

Consider how we might symbolize these sentences:

1. Mary is in Barcelona.
2. Mary is not in Barcelona.
3. Mary is somewhere besides Barcelona.

In order to symbolize sentence 1, we will need one predicate symbol (i.e., an
uppercase letter) and one individual constant (i.e., a lowercase letter). We can
provide the following symbolization key:

Bx: x is in Barcelona.
m: Mary

Note that we are here giving B and m different interpretations than we did in
the previous section. The symbolization key only specifies what symbols mean
in a specific context. It is vital that we continue to use this meaning of B and
m so long as we are talking about Mary and Barcelona. Later, when we are
symbolizing different sentences, we can write a new symbolization key and
use B and m to mean something else.

Now, sentence 1 is simply Bm.

Since sentence 2 is obviously related to the sentence 1, we do not want to
introduce different predicate and constant symbols. To put it partly in English,

ch. 2 atomic sentences and the boolean connectives 25

the sentence means ‘Not Bm.’ In order to symbolize this, we need a symbol for
logical negation. We will use ‘¬’. Now we can translate ‘Not Bm’ to ¬Bm.

Sentence 3 is about whether or not Mary is in Barcelona, but it does not contain
the word ‘not.’ Nevertheless, it is obviously logically equivalent to sentence 2.
They both mean: It is not the case that Mary is in Barcelona. As such, we can
translate both sentence 2 and sentence 3 as ¬Bm.

A sentence can be symbolized as ¬P if it can be paraphrased in
English as ‘It is not the case that P .’ ’P ’ is called a sentential
letter. Here and elsewhere, it stands for any sentence, atomic or
non-atomic.

Consider these further examples:

4. The widget can be replaced if it breaks.
5. The widget is irreplaceable.
6. The widget is not irreplaceable.

Sentence 4 can be paraphrased as ‘The widget is replaceable’. Given the fol-
lowing symbolization key:

Rx: x is replaceable
w: the widget

sentence 4 can be translated into TFL as Rw.

What about sentence 5? Saying the widget is irreplaceable means that it is
not the case that the widget is replaceable. So even though sentence 5 is not
negative in English, we symoblize it using negation as ¬Rw.

Sentence 6 can be paraphrased as ‘It is not the case that the widget is irreplace-
able.’ Using negation twice, we translate this as ¬¬Rw. The two negations in
a row each work as negations, so the sentence means ‘It is not the case that. . .
it is not the case that. . . Rw.’ If you think about the sentence in English, it is
logically equivalent to sentence 4. So when we define logical equivalence in
TFL, we will make sure that Rw and ¬¬Rw are logically equivalent.

More examples:

7. Elliott is happy.
8. Elliott is unhappy.

If we let Hx mean ‘x is happy’ and e name Elliot, then we can symbolize sentence
7 as He.

26 forallx : SFU

However, it would be a mistake to symbolize sentence 8 as ¬He. If Elliott is
unhappy, then he is not happy—but sentence 8 does not mean the same thing
as ‘It is not the case that Elliott is happy.’ It could be that he is not happy but
that he is not unhappy either. Perhaps he is somewhere between the two. In
order to allow for the possibility that he is indifferent, we would need a new
sentence letter to symbolize sentence 8.

For any sentence P : If P is true, then ¬P is false. If ¬P is true, then P is false.
Using ‘T’ for true and ‘F’ for false, we can summarize this in a characteristic
truth table for negation:

P ¬P
T F
F T

We will discuss truth tables at greater length in the next chapter.

Conjunction

Consider these sentences:

9. Adam is athletic.
10. Barbara is athletic.
11. Adam is athletic, and Barbara is also athletic.

Let us use the following symbolization key:

Ax: x is athletic.
d: Adam
b: Barbara

Note that ‘d’ is used to name Adam instead of ‘a’ in order to avoid confusing it
with the predicate symbol for ‘is athletic’, and because ‘d’ is the second letter
in Adam’s name. Sentence 9 can be symbolized as Ad.

Sentence 10 can be symbolized as Ab.

Sentence 11 can be paraphrased as ‘Ad and Ab.’ In order to fully symbolize this
sentence, we need another symbol. We will use ‘∧’. We translate ‘Ad and Ab’
as (Ad ∧ Ab). The logical connective ‘∧’ is called conjunction, and Ad and Ab
are each called conjuncts.

Notice that we make no attempt to symbolize ‘also’ in sentence 11. Words like
‘both’ and ‘also’ function to draw our attention to the fact that two things are

ch. 2 atomic sentences and the boolean connectives 27

being conjoined. They are not doing any further logical work, so we do not
need to represent them in TFL.

Some more examples:

12. Barbara is athletic and energetic.
13. Barbara and Adam are both athletic.
14. Although Barbara is energetic, she is not athletic.
15. Barbara is athletic, but Adam is more athletic than she is.

Sentence 12 is obviously a conjunction. The sentence says two things about
Barbara, so in English it is permissible to refer to Barbara only once. It might be
tempting to try this when translating the argument: Since Ab means ‘Barbara
is athletic’, one might paraphrase the sentences as ‘Ab and energetic.’ This
would be a mistake. Once we translate part of a sentence as Ab, any further
structure is lost. Ab is an atomic sentence; it is nothing more than true or false.
Conversely, ‘energetic’ is not a sentence; on its own it is neither true nor false.
We should instead paraphrase the sentence as ‘Ab and Barbara is energetic.’
Now we need to add a sentence letter to the symbolization key. Let E mean ‘x
is energetic.’ Now the sentence can be translated as (Ab ∧ Eb).

A sentence can be symbolized as (P ∧ Q) if it can be paraphrased
in English as ‘Both P , and Q ’. Each of the conjuncts must be a
sentence. As with ‘P ’, ‘Q ’ is a sentential letter. It stands for any
sentence whatsoever.

Sentence 13 says one thing about two different subjects. It says of both Barbara
and Adam that they are athletic, and in English we use the word ‘athletic’ only
once. In translating to TFL, it is important to realize that the sentence can be
paraphrased as, ‘Barbara is athletic, and Adam is athletic.’ This translates as
(Ab ∧ Ad).

Sentence 14 is a bit more complicated. The word ‘although’ sets up a contrast
between the first part of the sentence and the second part. Nevertheless, the
sentence says both that Barbara is energetic and that she is not athletic. In order
to make each of the conjuncts an atomic sentence, we need to replace ‘she’ with
‘Barbara.’

So we can paraphrase sentence 14 as, ‘Both Barbara is energetic, and Barbara
is not athletic.’ The second conjunct contains a negation, so we paraphrase
further: ‘Both Barbara is energetic and it is not the case that Barbara is athletic.’
This translates as (Eb ∧ ¬Ab).

Sentence 15 contains a similar contrastive structure. It is irrelevant for the
purpose of translating to TFL, so we can paraphrase the sentence as ‘Both
Barbara is athletic, and Adam is more athletic than Barbara.’ (Notice that we
once again replace the pronoun ‘she’ with her name.) How should we translate

28 forallx : SFU

the second conjunct? We don’t have a predicate symbol in our symbolization
key expressing the relation that one thing is more athletic than another. So, we
need to add one:

Mxy: x is more athletic than y

Note that M is a binary relation, and so allows us to translate sentence 15 into
(Ab ∧Mdb).

Sentences that can be paraphrased ‘P , but Q ’ or ‘Although P , Q ’
are best symbolized using conjunction: (P ∧ Q).

Two things are worth keeping in mind here. First, we are using expressions
like ‘P ’ and ‘Q ’ to stand for atomic sentences. Similarly, we used ‘P ’ to stand
for an atomic sentence when we constructed the characteristic truth table for
negation. These expressions are not really atomic sentences. Rather, they stand
for any atomic sentence with any n-ary predicate, including atomic sentences
with binary predicates like the one introduced above.

Second, the sentences Ab, Ad, Eb, and Mdb are atomic sentences. Considered
as symbols of TFL, they have no meaning beyond being true or false. We have
used them to symbolize different English language sentences that are all about
people being athletic, but this similarity is completely lost when we translate to
TFL. No formal language can capture all the structure of the English language,
but as long as this structure is not important to the argument there is nothing
lost by leaving it out.

For any sentences P and Q , (P ∧ Q) is true if and only if both P and Q are
true. We can summarize this in the characteristic truth table for conjunction:

P Q (P ∧ Q)
T T T
T F F
F T F
F F F

Conjunction is symmetrical because we can swap the conjuncts without chang-
ing the truth-value of the sentence. Regardless of what P and Q are, (P ∧ Q)
is logically equivalent to (Q ∧ P).

Disjunction

Consider these sentences:

ch. 2 atomic sentences and the boolean connectives 29

16. Either Denison will play golf with me, or he will watch movies.
17. Either Denison or Ellery will play golf with me.

For these sentences we can use this symbolization key:

Gxy: x will play golf with y
Mx: x will watch movies

d: Denison
e: Ellery
a: me

Sentence 16 can be paraphrased as ‘Either Gda or Md.’ To fully symbolize this,
we introduce a new symbol ‘∨’. The sentence becomes (Gda ∨Md). The ‘∨’
connective is called disjunction, and Gda and Md are called disjuncts.

Sentence 17 is only slightly more complicated. There are two subjects, but the
English sentence only gives the verb once. In translating, we can paraphrase
it as: ‘Either Denison will play golf with me, or Ellery will play golf with me.’
Now it obviously translates as (Gda ∨ Gea).

A sentence can be symbolized as (P ∨Q) if it can be paraphrased in
English as ‘Either P , or Q .’ Each of the disjuncts must be a sentence.

Sometimes in English, the word ‘or’ excludes the possibility that both disjuncts
are true. This is called an exclusive or. An exclusive or is clearly intended when
it says, on a restaurant menu, ‘Entrees come with either soup or salad.’ You
may have soup; you may have salad; but, if you want both soup and salad, then
you have to pay extra.

At other times, the word ‘or’ allows for the possibility that both disjuncts might
be true. This is probably the case with sentence 17, above. I might play with
Denison, with Ellery, or with both Denison and Ellery. Sentence 17 merely says
that I will play with at least one of them. This is called an inclusive or.

The symbol ‘∨’ represents an inclusive or. So (Gda ∨ Gea) is true if Gda is true,
if Gea is true, or if both Gda and Gea are true. It is false only if both Gda and
Gea are false. We can summarize this with the characteristic truth table for
disjunction:

P Q (P ∨ Q)
T T T
T F T
F T T
F F F

30 forallx : SFU

Like conjunction, disjunction is symmetrical. (P ∨Q) is logically equivalent to
(Q ∨ P).

These sentences are somewhat more complicated:

18. Either you will not have soup, or you will not have salad.
19. You will have neither soup nor salad.
20. You get either soup or salad, but not both.

Let us use the following symbolization key:

S1x: x will have soup
S2x: x will have salad

u: you

Sentence 18 can be paraphrased in this way: ‘Either it is not the case that you
get soup, or it is not the case that you get salad’. Translating this requires both
disjunction and negation. It becomes (¬S1u ∨ ¬S2u).

Sentence 19 also requires negation. It can be paraphrased as, ‘It is not the case
that either that you get soup or that you get salad’. We need some way of
indicating that the negation does not just negate the right or left disjunct, but
rather negates the entire disjunction. In order to do this, we put parentheses
around the disjunction: ‘It is not the case that (S1u∨S2u)’. This becomes simply
¬(S1u ∨ S2u).

Sentence 20 is an exclusive or. We can break the sentence into two parts. The
first part says that you get one or the other. We translate this as (S1u∨S2u). The
second part says that you do not get both. We can paraphrase this as, ‘It is not
the case both that you get soup and that you get salad.’ Using both negation
and conjunction, we translate this as ¬(S1u ∧ S2u). Now we just need to put
the two parts together. As we saw above, ‘but’ can usually be translated as a
conjunction. Sentence 20 can thus be translated as

(
(S1u∨ S2u)∧¬(S1u∧ S2u)

)
.

2.3 Parentheses matter

Consider these two sentences:

21. Mijung isn’t both at home and at the movie theatre.
22. Mijung isn’t at home but she is at the movie theatre.

We let H mean ‘x is at home’, M mean ‘x is at the movie theatre’ and i name
Mijung.

ch. 2 atomic sentences and the boolean connectives 31

Sentence 21 asserts that Mijung isn’t simultaneously at home and at the movie
theatre—which is presumably true, unless Mijung lives at the theatre. This
sentence can be translated ¬(Hi ∧Mi). Sentence 22 asserts first that Mijung is
not at home (which can be translated ¬Hi) and second that Mijung is at the
movie theatre (which is just Mi). So sentence 22 as a whole can be translated
(¬Hi ∧Mi).

Now suppose that Mijung is at home (and not at the movie theatre). In this
case, sentence 21 true but sentence 22 is false. This means that ¬(Hi ∧Mi) and
(¬Hi∧Mi) can have opposite truth values, even though they look very similar.
This example shows that the positions of the parentheses in a statement can
make a big difference!

Summary of logical notions

▷ An individual constant is a singular term that uniquely refers to an
existing object.

▷ A predicate is a symbol that refers to a property of an object or a relation
between objects.

▷ The arity of a predicate is the number of argument places that need to
be filled by terms in order for the resulting expression to be an atomic
sentence.

▷ An atomic sentence in TFL is any n-ary predicate followed by n terms.

▷ A symbolization key is a list of letters or symbols and their meanings
used in translating sentences from a natural language like English into a
logical language like TFL.

▷ negation is a unary Boolean connective that operates on a sentence,
atomic or complex, forming a complex sentence.

▷ conjunction is a binary Boolean connective that operates on two sen-
tences, atomic or complex, forming a complex sentence. The two parts
of a conjunction are called conjuncts.

▷ disjunction is a binary Boolean connective that operates on two sen-
tences, atomic or complex, forming a complex sentence. The two parts
of a disjunction are called disjuncts.

▷ A sentence that uses an exclusive or is true if and only if either disjuncts
are true but not both.

▷ A sentence that uses an inclusive or is false if and only if both disjuncts
are false.

32 forallx : SFU

Practice exercises

Part A Using the symbolization key given, translate each English-language
sentence into TFL.

Mx: x is a man in a suit
Cx: x is a chimpanzee
Gx: x is a gorilla

b: Bob
k: Koko
f : Flo

1. Bob is a man in a suit.
2. Bob is a man in a suit or he is not.
3. Koko is either a gorilla or a chimpanzee.
4. Bob is neither a gorilla nor a chimpanzee.
5. Flo is neither a gorilla nor a man in a suit, and nor a chimpanzee.
6. Flo is either a gorilla or a chimpanzee, not a man in a suit.

Part B Using the symbolization key given, translate each English-language
sentence into TFL. The translations build off each other, such that something
established in an earlier translation is sometimes used in subsequent sentences.

M1x: x was murdered
M2xy: x murdered y

Lx: x is lying
Fx: x was a frying pan

a: Mister Ace
b: the butler
c: the cook
d: the Duchess
e: Mister Edge

w: the murder weapon

1. Either Mister Ace or Mister Edge was murdered.
2. Mister Ace and Mister Edge weren’t both murdered.
3. Either the cook did it, or the butler did it.
4. Either the butler did it, or the Duchess is lying.
5. Mister Edge was murdered and the cook did it.
6. Either the murder weapon was a frying pan or the Duchess isn’t lying.
7. Either the Duchess is lying, or the culprit is either the cook or the butler.
8. Either the Duchess is lying, or both Mister Edge and Mister Ace were

murdered.
9. Neither the butler nor the cook did it.

ch. 2 atomic sentences and the boolean connectives 33

10. Although the murder weapon was a frying pan, either both Mister Edge
and Mister Ace were murdered, or the Duchess is lying.

11. Of course the Duchess is lying!

Part C Using the symbolization key given, translate each English-language
sentence into TFL.

Ex: x is an electrician.
Fx: x is a firefighter.
Sx: x is satisfied with their career.

a: Ava
h: Harrison

1. Ava and Harrison are both electricians.
2. Ava is a firefighter satisfied with her career.
3. Ava is either a firefighter or an electrician.
4. Harrison is an unsatisfied electrician.
5. Neither Ava nor Harrison is an electrician.
6. Both Ava and Harrison are electricians, but neither of them find it satis-

fying.
7. Harrison is either an unsatisfied firefighter or a satisfied electrician.
8. Harrison and Ava are both firefighters who are satisfied with their careers.
9. Either Harrison and Ava are both firefighters or neither of them is a

firefighter.

Part D In the chapter, we symbolized an exclusive or using ∨, ∧, and ¬. How
could you translate an exclusive or using only two connectives? Is there any
way to translate an exclusive or using only one connective?

Chapter 3

Truth tables

This chapter introduces a way of evaluating sentences and arguments of TFL.
Although it can be laborious, the truth table method is a purely mechanical
procedure that requires no intuition or special insight.

3.1 Decomposing a statement

As we’ve discussed, in TFL we make bigger statements from smaller ones. The
smaller statements from which a larger one is composed are called “substate-
ments”. When trying to understand the structure of a statement, it is often
helpful to draw a tree, showing the manner in which the substatements are
combined.

Consider for example this statement:

((Fa ∧ Rcd) ∨ Rcd)

This statement is a disjunction. We can split it into its two disjuncts:

((Fa ∧ Rcd) ∨ Rcd)

Rcd(Fa ∧ Rcd)

34

ch. 3 truth tables 35

Now the left-hand disjunct can be further decomposed:

((Fa ∧ Rcd) ∨ Rcd)

Rcd(Fa ∧ Rcd)

RcdFa

Now our tree is complete. We have completely decomposed our statement into
its component parts. The tree shows all the substatements.

Here is a slightly more complex example, involving negation:

(¬(Fa ∧ Rcd) ∨ Rcd)

Rcd¬(Fa ∧ Rcd)

(Fa ∧ Rcd)

RcdFa

When you’re drawing these trees, it’s very important to remember that a state-
ment always has the same number of left brackets and right brackets!

3.2 Truth-functional connectives

Any non-atomic sentence of TFL is composed of atomic sentences with truth-
functional connectives. A connective is truth-functional when the truth value
of the compound sentence depends only on the truth value of the atomic
sentences that comprise it. For example, in order to know the truth value of
(a = b ∨ a = c), we only need to know the truth value of a = b and the truth
value of a = c.

36 forallx : SFU

In this chapter, we will make use of the fact that all of the logical operators
in TFL are truth-functional—it makes it possible to construct truth tables to
determine the logical features of sentences. You should realize, however, that
this is not possible for all languages. In English, it is possible to form a new
sentence from any simpler sentence P by saying ‘It is possible that P .’ The
truth value of this new sentence does not depend directly on the truth value
of P . Even if P is false, perhaps in some sense P could have been true—then
the new sentence would be true. Some formal languages, called modal logics,
have an operator for possibility. In a modal logic, we could translate ‘It is
possible that P ’ as ⋄P . However, the ability to translate sentences like these
come at a cost: The ⋄ operator is not truth-functional, and so modal logics are
not amenable to truth tables.

3.3 Complete truth tables

The truth value of sentences which contain only one connective are given by the
characteristic truth table for that connective. In the previous chapter, we wrote
the characteristic truth tables with ‘T’ for true and ‘F’ for false. It is important
to note, however, that this is not about truth in any deep or cosmic sense. Poets
and philosophers can argue at length about the nature and significance truth,
but the truth functions in TFL are just rules which transform input values into
output values.

Here are the truth tables for the connectives we’ve studied so far, written in
terms of Ts and Fs.

P ¬P
T F
F T

P Q (P ∧ Q) (P ∨ Q)
T T T T
T F F T
F T F T
F F F F

Table 3.1: The characteristic truth tables for the connectives of TFL.

The characteristic truth table for conjunction, for example, gives the truth
conditions for any sentence of the form (P ∧ Q). Even if the conjuncts P and
Q are long, complicated sentences, the conjunction is true if and only if both P
and Q are true.

Now let’s draw a truth table for a more complicated statement,
(
(Fa∧Rcd)∨Rcd

)
.

To do this, we need one row for each possible assignment of truth values to
the atomic statements. Since we have two atomic sentences, and there are two
truth values, we need four rows: (1) Both statements are true, (2) Fa is true and
Rcd is false, (3) Fa is false and Rcd is true, (4) Both statements are false. We
need a column for the statement we’re interested in, and a column for every

ch. 3 truth tables 37

substatement of it. It’s helpful to put the smaller statements on the left, and
the bigger statements on the right. So we have:

Fa Rcd (Fa ∧ Rcd)
(
(Fa ∧ Rcd) ∨ Rcd

)
T T
T F
F T
F F

Now we can fill in the remaining columns. (Fa∧Rcd) is a conjunction of Fa and
Rcd. Remembering that a conjunction is true when both conjuncts are true, we
can write “T” in the top row; remembering that a conjunction is false when
either conjunct is false, we can write “F” in all the remaining rows:

Fa Rcd (Fa ∧ Rcd)
(
(Fa ∧ Rcd) ∨ Rcd

)
T T T
T F F
F T F
F F F

Now for the last column. Remembering that a disjunction is true when one
of the disjuncts is true, we can write a “T” in the first row and the third row;
remembering that a disjunction is false when both disjuncts are false, we can
write a “F” in the second row and the fourth row:

Fa Rcd (Fa∧Rcd)
(
(Fa ∧ Rcd)∨Rcd

)
T T T T
T F F F
F T F T
F F F F

Now our truth table is complete. One thing we notice is that the column for
((Fa ∧ Rcd) ∨ Rcd) and the column for Rcd have the same entries! This means
that these two statements are logically equivalent—more on this later.

38 forallx : SFU

Now let’s work through a slightly more complex example, (¬(Fa∧Rcd)∨Rcd).
As before, we need a column for the statement we’re interested in, and a column
for every substatement; we again need four rows:

Fa Rcd (Fa∧Rcd) ¬ (Fa ∧ Rcd)
(
¬(Fa ∧ Rcd)∨Rcd

)
T T
T F
F T
F F

And now we can fill in the three empty columns. As before, we start at the left
and move right:

Fa Rcd (Fa∧Rcd) ¬ (Fa ∧ Rcd)
(
¬(Fa ∧ Rcd)∨Rcd

)
T T T F T
T F F T T
F T F T T
F F F T T

One thing we notice is that out statement has a ‘T’ in every row. This means
that it is a tautology—more on this later.

A complete truth table has a row for all the possible combinations of T and F
for all of the atomic sentences. The size of the complete truth table depends on
the number of different atomic sentences in the table. Atomic sentences require
only two rows, as in the characteristic truth table for negation. This is true even
if the same letter is repeated many times, as in the sentence

(
Pa ∧ ¬(Pa ∧ Pa)

)
.

The complete truth table requires only two lines because there are only two
possibilities: Pa can be true or it can be false. A single atomic sentence can
never be marked both T and F on the same row. The truth table for this sentence
looks like this:

Pa (Pa∧ Pa) ¬ (Pa ∧ Pa)
(
Pa∧¬(Pa ∧ Pa)

)
T T F F
F F T F

Looking at the column underneath the main connective, we see that the sen-
tence is false on both rows of the table; i.e., it is false regardless of whether Pa
is true or false. This means that the statement is a contradiction—more on this
later.

A sentence that contains two atomic sentences requires four rows for a complete
truth table, as we have seen.

ch. 3 truth tables 39

A sentence that contains three atomic sentences requires eight rows. For ex-
ample:

Ma Nb Pc (Nb∨ Pc)
(
Ma∧ (Nb ∨ Pc)

)
T T T T T
T T F T T
T F T T T
T F F F F
F T T T F
F T F T F
F F T T F
F F F F F

A complete truth table for a sentence that contains four different atomic sen-
tences requires 16 rows. Five atomic sentences, 32 rows. Six atomic sentences,
64 rows. And so on. To be perfectly general: If a complete truth table has n
different atomic sentences, then it must have 2n rows.

In order to fill in the columns of a complete truth table, begin with the right-
most atomic sentence and alternate Ts and Fs. In the next column to the left,
write two Ts, write two Fs, and repeat. For the third atomic sentence, write
four Ts followed by four Fs. This yields an eight row truth table like the one
above. For a 16 row truth table, the next column of atomic sentences should
have eight Ts followed by eight Fs. For a 32 row table, the next column would
have 16 Ts followed by 16 Fs. And so on.

3.4 Using truth tables

Tautologies and contradictions

Recall from chapter 1 that a logical truth is a sentence that must be true as a
matter of logic. There, we said that a tautology is a particular kind of logical
truth, and that not all logical truths are tautologies. Similarly, we said that a
contradiction is a particular kind of logical falsehood, but that not all logical
falsehoods are contradictions. With truth tables, we are now in a position to see
why. A tautology is simply a sentence whose truth table receives a T in every
row of the column under its main connective. Similarly, a contradiction is
any sentence whose truth table receives an F in every row of the column under
its main connective. A sentence that receives a mixture of Ts and Fs is called a
tautological contingency

From the truth tables in the previous section, we know that (¬(Fa∧Rcd)∨Rcd)
is a tautology, and that (Pa ∧ ¬(Pa ∧ Pa)) is a contradiction.

40 forallx : SFU

But now consider the following sentence:

(a = a ∧ b = b)

This sentence is a logical truth. It must be true as a matter of logic. (Remember
that we stipulated in chapter 1 that individual constants uniquely refer to
existing objects.) But it is not a tautology. A completed truth table for this
sentence will reveal this:

a = a b = b (a = a∧ b = b)
T T T
T F F
F T F
F F F

We see quite clearly that (a = a ∧ b = b) is not a tautology: its completed truth
table does not receive a T in every row of the column under the main connec-
tive. This shows that not every logical truth is a tautology. So, constructing
completed truth tables to check for logical truths has its limit: it cannot identify
all logical truths.

Similarly, consider the sentence:

(¬a = a ∧ ¬b = b)

We will introduce a symbol “,” to express the negation of an identity statement,
but note that this is not a new logical symbol. It is simply a shorthand for
applying the negation symbol “¬” to an identity statement of the form n = n.
So, we can express the above sentence in the following way:

(a , a ∧ b , b)

This sentence is a logical falsehood. It is false as a matter of logic. But it is not
a contradiction, as its completed truth table will show:

a = a b = b a , a b , b (a , a∧ b , b)
T T F F F
T F F T F
F T T F F
F F T T T

We see here that this sentence’s completed truth table does not receive an F in
every row of the column under its main connective. This shows that not every

ch. 3 truth tables 41

logical falsehood is a contradiction. And here we have another example of the
limit of completed truth tables: they cannot identify all logical falsehoods.

Why is it that completed truth tables are limited in this way? The culprit,
as you might have guessed, is the identity symbol. We know what it means:
‘is identical to’ and this meaning is fixed in PL. But its meaning is rendered
completely opaque when we put identity statements in truth tables. That is
because truth tables are only sensitive to the meanings of the truth functional
connectives. In terms of truth tables, there is no difference between a statement
like a = a and any other statement that expresses a binary relation between two
objects—e.g., Raa—and which is not a logical truth. We know that any row that
assigns an F to a = a or to b = b, or a T to a , a or b , b does not correspond to
a possible circumstance, but our truth table method does not ‘know’ this.

Tautological equivalence

Two sentences are logically equivalent if they have the same truth value as a
matter logic. With truth tables, we can make this notion more precise in TFL.
You can show in TFL that two statements are tautologically equivalent by
drawing a single truth table containing both statements, what we will call a
‘joint truth table’. If the two statements have the same entries in every row,
then they are tautologically equivalent.

Consider the sentences ¬(Rab ∨ Tc) and (¬Rab ∧ ¬Tc). Are they logically
equivalent? To find out, we construct a truth table.

Rab Tc (Rab∨ Tc) ¬ (Rab ∨ Tc) ¬Rab ¬ Tc (¬Rab∧¬Tc)
T T T F F F F
T F T F F T F
F T T F T F F
F F F T T T T

Our two statements have the same entry in every row, so they are tautologically
equivalent. Two statements (or any number of statements) are contradictory if
there is no row in their joint truth table where each statement receives a T.

In the same way that truth tables cannot pick out all logical truths and logical
falsehoods, they also cannot pick out all logical equivalences. Consider the
pair of sentences a = a and b = b. These sentences are both logically true.
So, they share the same truth value as a matter of logic, and are thus logically
equivalent. Yet, they are not tautologically equivalent, as a joint truth table will
show. (We leave it to the reader to show this using a joint truth table.) We will
need to move beyond our method of using truth tables if we want to pick out
all logical equivalences. We will see how to do this in subsequent chapters.

42 forallx : SFU

Tautological validity

An argument is valid if it is logically impossible for the premises to be true and
for the conclusion to be false at the same time.

As we did for the notion of logical equivalence, we can make the notion of validity
more precise in PL by appealing to a joint truth table for the premises and the
conclusion. We say that an argument is tautologically valid if there is no row
in the joint truth table that assigns a T to each of the premises and an F to the
conclusion.

Consider this argument:

Oa ∨
(
(Hea ∨Oa)

)
¬Oa

.˙. Hea

Is this tautologically valid? Let’s draw a joint truth table:

Conclusion Premise Premise
Hea Oa (Hea∨Oa) (Oa ∨ (Hea ∨Oa)) ¬ Oa

T T T T F
T F T T T
F T T T F
F F F F T

Yes, the argument is tautologically valid. The only row on which both premises
receive Ts is the second row, and on that row the conclusion also receives a
T. While all tautologically valid arguments can be picked out using our truth
table method, it cannot identify all valid arguments. Consider the following
argument:

Bcd
c = e

.˙. Bed

This is a valid argument: it is logically impossible for the premises to be true
and for the conclusion to be false at the same time. Yet, a joint truth table will
show that it is not tautologically valid. (We leave it to the reader to show this.
Which row is the culprit?) As with logical equivalence, we will need to move
beyond our truth table method if we want to pick out all valid arguments.

ch. 3 truth tables 43

Summary of logical notions

▷ A tautology is a sentence whose truth table receives a T in every row of
the column under its main connective.

▷ A contradiction or tautological falsehood is a sentence whose truth
table receives an F in every row of the column under its main connective.

▷ A tautological contingency is a sentence that receives a mixture of Ts
and Fs in the column under its main connective.

▷ Two statements are tautologically equivalent if they have the same
entry in every row of their joint truth table.

▷ An argument is tautologically valid if there is no row in the joint truth
table that assigns a T to each of the premises and an F to the conclusion.

Practice exercises

If you want additional practice, you can construct truth tables for any of the
sentences and arguments in the exercises for the previous chapter.

Part A Draw truth tables for the following statements. In which cases are you
able to say that the statement is a tautology? In which cases are you able to say
that it is a contradiction?

1. (¬Hab ∧Hab)
2. (¬Pa ∨Hab)
3. (¬Rcd ∨ Rcd)
4. ((Pa ∧Hab) ∨ (Hab ∧ Pa))
5.
[
[(Pa ∧Hab) ∧ ¬(Pa ∧Hab)] ∧ Tc

]
6.
[
[(Pa ∧Hab) ∨ (Pa ∧ ¬Hab)] ∨ ¬Hab

]
Part B Draw truth tables for each pair of statements. In which cases are you
able to say that the statements are tautologically equivalent?

1. Pa, ¬Pa
2. Pa, (Pa ∨ Pa)
3. ¬(Pa ∧Hab), (¬Pa ∨ ¬Hab)
4. [(Pa ∨Hab) ∧ Tc], [Pa ∨ (Hab ∧ Tc)]

44 forallx : SFU

Part C Determine whether each argument is tautologically valid or tautologi-
cally invalid. Justify your answer with a joint truth table.

1. (Pa ∧Hab), Tc .˙. (Hab ∧ Tc)
2. (Pa ∨Hab), Tc .˙. (Hab ∧ Tc)
3. (Pa ∨Hab), (Hab ∨ Tc), ¬Pa .˙. (Hab ∧ Tc)
4. (Pa ∨Hab), (Hab ∨ Tc), ¬Hab .˙. (Pa ∧ Tc)

Part D We said in this chapter that a tautology is a sentence whose completed
truth table receives a T in every row of the column under the main connective.
Similarly, we said that a contradiction is a sentence whose truth table receives
an F in every row of the column under its main connective. What does that
entail about possibility of atomic tautologies or atomic contradictions?

Chapter 4

Conditionals

4.1 Introducing the conditional

For the following sentences, let Ru mean ‘You will cut the red wire’ and Eb
mean ‘The bomb will explode.’

1. If you cut the red wire, then the bomb will explode.
2. The bomb will explode only if you cut the red wire.

Sentence 1 can be translated partially as ‘If Ru, then Eb.’ We will use the symbol
‘→’ to symbolize “If . . . then . . . ” sentences. The sentence becomes (Ru→ Eb).
The connective is called a conditional. The sentence on the left-hand side of
the conditional (Ru in this example) is called the antecedent. The sentence on
the right-hand side (Eb) is called the consequent.

Sentence 2 is also a conditional. Since the word ‘if’ appears in the second half
of the sentence, it might be tempting to symbolize this in the same way as
sentence 1. That would be a mistake.

The conditional (Ru→ Eb) says that if Ru were true, then Eb would also be true.
It does not say that your cutting the red wire is the only way that the bomb
could explode. Someone else might cut the wire, or the bomb might be on a
timer. The sentence (Ru → Eb) does not say anything about what to expect
if Ru is false. Sentence 2 is different. It says that the only conditions under
which the bomb will explode involve your having cut the red wire—i.e., if the
bomb explodes, then you must have cut the wire. As such, sentence 2 should
be symbolized as (Eb→ Ru).

It is important to remember that the connective ‘→’ says only that, if the
antecedent is true, then the consequent is true. It says nothing about the causal

45

46 forallx : SFU

connection between the two events. Translating sentence 2 as (Eb→ Ru) does
not mean that the bomb exploding would somehow have caused your cutting
the wire. Both sentence 1 and 2 suggest that, if you cut the red wire, your
cutting the red wire would be the cause of the bomb exploding. They differ
on the logical connection. If sentence 2 were true, then an explosion would tell
us—those of us safely away from the bomb—that you had cut the red wire.
Without an explosion, sentence 2 tells us nothing.

The paraphrased sentence ‘P only if Q ’ is logically equivalent to ‘If
P , then Q .’

‘If P then Q ’ means that if P is true then so is Q . So, we know that if the
antecedent P is true but the consequent Q is false, then the conditional ‘If
P then Q ’ is false. What is the truth value of ‘If P then Q ’ under other
circumstances? Suppose, for instance, that the antecedent P happened to be
false. ‘If P then Q ’ would then not tell us anything about the actual truth value
of the consequent Q , and it is unclear what the truth value of ‘If P then Q ’
would be.

In English, the truth of conditionals often depends on what would be the case if
the antecedent were true—even if, as a matter of fact, the antecedent is false. This
poses a problem for translating conditionals into TFL. Considered as sentences
of TFL, Ru and Eb in the above examples have nothing intrinsic to do with each
other. In order to consider what the world would be like if Ru were true, we
would need to analyze what Ru says about the world. Since Ru is an atomic
symbol of TFL, however, there is no further structure to be analyzed other than
its truth-aptness.

In order to translate conditionals into TFL, we will not try to capture all the
subtleties of the English language ‘If. . . then. . ..’ Instead, the symbol ‘→’ will be
a material conditional. This means that when P is false, the conditional (P→Q)
is automatically true, regardless of the truth value of Q . If both P and Q are
true, then the conditional (P→Q) is true.

In short, (P→Q) is false if and only if P is true and Q is false. We can summarize
this with a characteristic truth table for the conditional:

P Q (P →Q)
T T T
T F F
F T T
F F T

ch. 4 conditionals 47

The conditional is asymmetrical. You cannot swap the antecedent and conse-
quent without changing the meaning of the sentence, because (P→Q) and
(Q→P) are not logically equivalent.

Not all sentences of the form ‘If. . . then. . .’ are conditionals. Consider this
sentence:

3. If anyone wants to see me, then I will be in my office.

If I say this, it means that I will be in my office, regardless of whether anyone
wants to see me or not—but if someone did want to see me, then they should
look for me there. If we let Ox mean ‘x will be in my office’ and i mean ‘I’, then
sentence 3 can be translated simply as Oi.

4.2 Introducing the biconditional

Consider these sentences:

4. The figure on the board is a triangle only if it has exactly three sides.
5. The figure on the board is a triangle if it has exactly three sides.
6. The figure on the board is a triangle if and only if it has exactly three

sides.

Consider the following symbolization key:

Tx: x is a triangle
Sx: x has three sides

f : the figure on the board

Sentence 4 can be translated as (T f → S f). Sentence 5 is importantly different.
It can be paraphrased as ‘If the figure has exactly three sides, then the figure
on the board is a triangle’. So it can be translated as (S f → T f).

Sentence 6 says that T f is true if and only if S f is true; we can infer S f from T f ,
and we can infer T f from S f . This is called a biconditional, because it entails
the two conditionals (S f → T f) and (T f → S f). We will use ‘↔’ to represent
the biconditional; sentence 6 can be translated as (T f ↔ S f).

We could abide without a new symbol for the biconditional. Since sentence 6
means ‘(T f → S f) and (S f → T f),’ we could translate it as

(
(T f → S f)∧ (S f →

T f)
)
. Because we could always write

(
(T f → S f) ∧ (S f → T f)

)
instead of

(T f ↔ S f), we do not strictly speaking need to introduce a new symbol for

48 forallx : SFU

the biconditional. Indeed, we did not need to introduce a new symbol for the
conditional, either. Sentences of the form (P → Q) are logically equivalent to
sentences of the form (¬P ∨Q), as a joint truth table will make clear. We don’t
gain expressive power by adding→and↔in TFL. Conditionals and bicondi-
tionals can be perfectly well-expressed simply using the Boolean connectives
(i.e., ∧, ∨, ¬). Nevertheless, logical languages usually have symbols for the
conditional and the biconditional. TFL will have them, making it easier to
translate phrases like ‘If. . . then. . .’, ‘. . . only if . . .’, and ‘. . . if and only if . . .’.

(P ↔ Q) is true if and only if P and Q have the same truth value. This is the
characteristic truth table for the biconditional:

P Q (P ↔Q)
T T T
T F F
F T F
F F T

4.3 The truth-functional completeness of the
Boolean connectives

We said that we don’t gain in expressive power by adding→ and↔ to TFL. Any
sentence expressible using→ or↔ can be expressed using ¬, ∧, and ∨. In fact,
something else is true of the Boolean connectives. They are truth-functionally
complete: they can be used to express every truth-functional sentence in TFL.
So, we don’t need any other n-ary connective in TFL.

A full proof of the truth-functional completeness of the Boolean connectives
requires a method of proof called ‘mathematical induction’. Since we are
not familiar with mathematical induction, we are not in a position to offer a
complete proof of the truth-functional completeness of the Boolean connectives.
But we are in a position to offer a good sketch of a proof.

Consider, first, unary connectives: connectives that operate on one sentence only
(e.g., ¬). How can we be certain that there isn’t a truth-functional sentence out
there whose expression in TFL requires some other unary connective? How
do we know that we don’t need another unary connective?

Well, suppose we did. Let’s use ‘∗’ to name this other unary connective. Note
that the characteristic truth table for this unary connective would need to have
two (i.e., 21) rows. So, it would look something like this:

P ∗P
T 1st value
F 2nd value

ch. 4 conditionals 49

Since there are two truth values, there are only four (i.e., 22) different ways to
fill out this truth table:

P ∗P
T T
F T

(a) Table 1

P ∗P
T T
F F

(b) Table 2

P ∗P
T F
F F

(c) Table 3

P ∗P
T F
F T

(d) Table 4

Table 4.1: Possible characteristic truth tables for ‘∗’

If the characteristic truth table for ‘∗’ was given by table 4.1a, then we could
express ∗P thusly: (P ∨¬P). If the characteristic truth table for ‘∗’ was given by
table 4.1b, we could express ∗P with the sentence P . If the characteristic truth
table for ‘∗’ was given by table 4.1c, we could express ∗P with (P ∧ ¬P). And
table 4.1d is simply the characteristic truth table for ¬P . So, we are clearly not
missing any unary connective.

Now consider binary connectives—i.e., connectives that operate on two sen-
tences. There are two Boolean binary connectives: ∧ and ∨. How can we be
certain that there is no truth-functional sentence whose expression requires the
use of some other binary connective? Are we missing any binary connective?
Again, suppose we were. Let’s use ‘♠ ’ to name this binary connective. Like
∧ and ∨, its characteristic truth table would have four (i.e., 22) rows. It would
look something like this:

P Q (P ♠Q)
T T 1st value
T F 2nd value
F T 3rd value
F F 4th value

Since there are two truth values, there can be a maximum of sixteen (i.e., 42)
different binary connectives.

Now consider the following conjunctions:

C1: (P ∧ Q) C3: (¬P ∧ Q)
C2: (P ∧ ¬Q) C4: (¬P ∧ ¬Q)

If the characteristic truth table for (P ♠Q) assigns a T in the first row only, then
(P ♠Q) is simply conjunction (∧): C1. If it assigns a T only in the second, third,
or fourth row, then we can express (P ♠Q) with C2, C3, or C4 respectively. If
the characteristic truth table for (P ♠Q) assigns more than one T, then (P ♠Q)
will be a disjunction of the conjunctions that correspond to the row numbers
that receive a T. For example, if the characteristic truth table for (P ♠Q) were:

50 forallx : SFU

P Q (P ♠Q)
T T T
T F T
F T F
F F T

then we could express (P ♠Q) with C1 ∨C2 ∨C4: ((P ∧Q)∨ (P ∧¬Q)∨ (¬P ∧
¬Q)).

If the characteristic truth table for (P ♠Q) assigns an F in every row, then we
can express (P ♠Q) thusly: (P ∧ ¬P). So we’re clearly not missing any binary
connective, either.

The same kind of procedure will reveal that we do not need any other n-ary
truth functional connective. Consider, for example, a ternary connective r
with the following characteristic truth table:

P Q R r (P ,Q ,R)
T T T T
T T F F
T F T F
T F F T
F T T T
F T F F
F F T T
F F F F

We can see that r (P ,Q ,R) is true in only four circumstances—i.e., when P , Q ,
and R are all true (row 1), when P is true and Q and R are false (row 4), when
P is false and Q and R are true (row 5), and when P and Q are false and R is
true (row 7). So, r (P ,Q ,R) can be expressed with the Boolean connectives in
the following way:

([(
P ∧ (Q ∧ R)

)
∨

(
P ∧ (¬Q ∧ ¬R)

)]
∨[(

¬P ∧ (Q ∧ R)
)
∨

(
¬P ∧ (¬Q ∧ R)

)])
Granted, this is a fairly long and cumbersome disjunction. But it shows that
we don’t need to add the ternary connective r in TFL.

This is only a sketch of a proof that the Boolean connectives are truth functionally
complete. Once we’ve established the truth-functional completeness of the
Boolean connectives, we can also show that the sets of connectives {¬,∧} and
{¬,∨} are truth-functionally complete on their own.

ch. 4 conditionals 51

To see this, consider first De Morgan’s Laws, two valid transformation rules
named after 19th century British logician Augustus De Morgan:

DM1: ¬(P ∧ Q)⇔ (¬P ∨ ¬Q)
DM2: ¬(P ∨ Q)⇔ (¬P ∧ ¬Q)

Next, consider another valid transformation rule that we might call ‘double
negation’:

DN: P ⇔ ¬¬P

DN simply states that any sentence is logically equivalent to the negation of its
negation. (Joint truth tables will show that DM1, DM2, and DN state logical
equivalences. You are encouraged to do them.)

DM1, DM2, and DN can be used to show how to express ∧ using ¬ and ∨,
and how to express ∨ using ¬ and ∧, thus showing that if {¬,∧,∨} is truth-
functionally complete, so are {¬,∧} and {¬,∨}:

(P ∧ Q)⇔ ¬(¬P ∨ ¬Q)
(P ∨ Q)⇔ ¬(¬P ∧ ¬Q)

4.4 Unless

We have now introduced all the connectives of TFL: ¬, ∧, ∨,→, and↔. We can
use them together to translate many kinds of sentences. Consider the examples
of sentences that use the English-language connective ‘unless’:

7. Unless you wear a jacket, you will catch a cold.
8. You will catch a cold unless you wear a jacket.

Now take the following symbolization key:

Jx: x wears a jacket
Cx: x will catch a cold

u: You

We can paraphrase sentence 7 as ‘Unless Ju, Cu.’ This means that if you do not
wear a jacket, then you will catch cold; with this in mind, we might translate
it as (¬Ju → Cu). It also means that if you do not catch a cold, then you must
have worn a jacket; with this in mind, we might translate it as (¬Cu→ Ju).

52 forallx : SFU

Which of these is the correct translation of sentence 7? Both translations are
correct, because the two translations are logically equivalent in TFL. A joint
truth table will reveal this. (Again, you are encouraged to do one.)

Sentence 8, in English, is logically equivalent to sentence 7. So, it too can be
translated as (¬Ju→ Cu) or (¬Cu→ Ju).

When symbolizing sentences like sentence 7 and sentence 8, it is easy to get
turned around. Since the conditional is not symmetric, it would be wrong to
translate either sentence as (Ju → ¬Cu). Fortunately, there are other logically
equivalent expressions. Both sentences mean that you will wear a jacket or
you will catch a cold (if you don’t wear a jacket). So we can in effect translate
them as (Ju ∨ Cu). (You might worry that the ‘or’ here should be an exclusive
or. However, the sentences do not exclude the possibility that you might both
wear a jacket and catch a cold; jackets do not protect you from all the possible
ways that you might catch a cold.)

If a sentence can be paraphrased as ‘Unless P , Q ,’ then it can be
symbolized as (P ∨ Q).

Summary of logical notions

▷ A conditional sentence is true if and only if the antecedent is false or the
consequent is true.

▷ The antecedent is the left-hand sentence of a conditional sentence of the
form ‘if . . . then . . .’.

▷ The consequent is the right-hand sentence of a conditional sentence of
the form ‘if . . . then . . .’.

▷ A biconditional sentence is true if and only if both the left- and right-
hand sentences have the same truth value.

ch. 4 conditionals 53

Practice exercises

Part A Using the symbolization key given, translate each English-language
sentence into TFL.

Mx: x is a man in a suit
Cx: x is a chimpanzee
Gx: x is a gorilla

b: Bob
k: Koko
f : Flo

1. If Flo is a chimpanzee, then she is not a gorilla.
2. If Koko is not a man in a suit, then she’s either a chimpanzee or a gorilla.
3. If Bob is a chimpanzee, then he is neither a gorilla nor a chimpanzee.
4. Unless Bob is a man in a suit, he is either a chimpanzee or a gorilla.

Part B Using the symbolization key given, translate each English-language
sentence into TFL. The translations build off each other, such that something
established in an earlier translation is sometimes used in subsequent sentences.

M1x: x was murdered
M2xy: x murdered y

Lx: x is lying
Fx: x was a frying pan

a: Mister Ace
b: the butler
c: the cook
d: the Duchess
e: Mister Edge

w: the murder weapon

1. If Mister Ace was murdered, then the cook did it.
2. If Mister Edge was murdered, then the cook did not do it.
3. The cook did it only if the Duchess is lying.
4. If the murder weapon was a frying pan, then the culprit must have been

the cook.
5. If the murder weapon was not a frying pan, then the culprit was either

the cook or the butler.
6. Mister Ace was murdered if and only if Mister Edge was not murdered.
7. The Duchess is lying, unless it was Mister Edge who was murdered.
8. If Mister Ace was murdered, he was murdered with a frying pan.

54 forallx : SFU

Part C Using the symbolization key given, translate each English-language
sentence into TFL.

Ex: x is an electrician.
Fx: x is a firefighter.
Sx: x is satisfied with their career.

a: Ava
h: Harrison

1. If Ava is a firefighter, then she is satisfied with her career.
2. Ava is a firefighter, unless she is an electrician.
3. Harrison is satisfied only if he is firefighter.
4. If Ava is not an electrician, then neither is Harrison, but if she is, then he

is too.
5. Ava is satisfied with her career if and only if Harrison is not satisfied with

his.
6. If Harrison is both an electrician and a firefighter, then he must be satisfied

with his work.
7. Harrison and Ava are both firefighters if and only if neither of them is an

electrician.

Part D Give a symbolization key and symbolize the following sentences in TFL.

1. Alice and Bob are both spies.
2. If either Alice or Bob is a spy, then the code has been broken.
3. If neither Alice nor Bob is a spy, then the code remains unbroken.
4. The German embassy will be in an uproar, unless someone has broken

the code.
5. Either the code has been broken or it has not, but the German embassy

will be in an uproar regardless.
6. Either Alice or Bob is a spy, but not both.

Part E For each argument, write a symbolization key and translate the argument
as well as possible into TFL.

1. If Dorothy plays the piano in the morning, then Roger wakes up cranky.
Dorothy plays piano in the morning unless she is distracted. So if Roger
does not wake up cranky, then Dorothy must be distracted.

2. The precipitation is either rain or snow. If it is rain, then Neville will be
sad. If it is snow, then Neville will be cold. Therefore, Neville will either
be sad or cold.

3. If Zoog remembered to do his chores, then things are clean but not neat.
If he forgot, then things are neat but not clean. Therefore, things are
either neat or clean—but not both.

ch. 4 conditionals 55

Part F Determine whether each argument is valid or invalid.

1. (Pa→ Qa), Pa, .˙. Qa
2. (Pa→ Qa), Qa, .˙. Pa
3. (Pa→ Qa), ¬Qa, .˙. ¬Pa
4. (Pa→ Qa), ¬Pa, .˙. ¬Qa
5. (Pa↔ Qa), .˙. (Qa↔ Pa)
6. (Pa↔ Qa), .˙. (¬Pa↔ ¬Qa)
7. (Pa↔ Qa), .˙. (Pa ∨ ¬Qa)
8. (Pa→ Qa), .˙. (¬Qa→ ¬Pa)
9. (Pa→ Qa), .˙. (¬Pa→ ¬Qa)

10. (Pa→ Qa), (Qa→ Ra), .˙. (Pa→ Ra)
11. (Pa ∨ (Qa→ Pa)), .˙. (¬Pa→ ¬Qa)

Part G Given that the Boolean connectives are truth-functionally complete,
show that the sets {¬, ∧} and {¬, ∨} are also truth-functionally complete.

Part H Show how to express the following ternary truth functional connective
using just the Boolean connectives.

P Q R ♣ (P ,Q ,R)
T T T T
T T F T
T F T F
T F F F
F T T T
F T F F
F F T T
F F F F

Chapter 5

Introducing proofs

Consider these two arguments in TFL:

Argument A

(Kc ∨ Rca)
¬Kc

.˙. Rca

Argument B

(Kc→ Rca)
Kc

.˙. Rca

Clearly, these are valid arguments. Argument A makes use of an inference
form that is always valid: Given a disjunction and the negation of one of the
disjuncts, the other disjunct follows as a valid consequence. This rule is called
disjunctive syllogism, and you can confirm that the corresponding argument is
valid by constructing a four-line joint truth table.

Argument B makes use of a different valid form: Given a conditional and its
antecedent, the consequent follows as a valid consequence. This is called modus
ponens. Again, you can confirm that the corresponding argument is valid by
constructing a four-line joint truth table.

Using joint truth tables to check for validity has its limits. Consider, for exam-
ple, the number of rows in a joint truth table we would need to check for the
validity of an argument containing six different atomic sentences: 64 (i.e., 26)
rows! Even if we were willing to take the time and meticulously fill out such
a joint truth table, we have seen in the previous chapter that joint truth tables
can only check for tautological validity. But as we have seen, some arguments
are valid yet not tautologically so. Consider the following argument:

56

ch. 5 introducing proofs 57

Argument C

Pa
a = b

.˙. Pb

This argument is clearly valid, yet a joint truth table will not show this. There
is one row of the joint truth table that assigns Ts to both Pa and a = b yet an F
to Pb. So we need a more sophisticated method that can prove the validity of
this argument.

Consider now this inference:

Premise One:
(
¬Td→ (Rad ∨ Td)

)
Premise Two: ¬Td
Conclusion: Rad

By modus ponens, Premise One and Premise Two entail (Rad ∨ Td). This is an
intermediate conclusion. It follows logically from the premises, but it is not the
conclusion we want. Now (Rad∨Td) and Premise Two entail Rad, by disjunctive
syllogism, which is the desired conclusion.

This argument just described can be presented like this:

1
(
¬Td→ (Rad ∨ Td)

)
2 ¬Td

3 (Rad ∨ Td) By modus ponens, from lines 1 and 2

4 Rad By disjunctive syllogism, from lines 2 and 3

This is a proof. It is a sequence of statements. The premises come first; the
desired conclusion is at the end. Each statement that is not a premise is justified
by appeal to some inference rule, applied to statements earlier in the sequence.

We write the proof as a series of numbered lines. The premise or premises
come first. We draw a horizontal line to separate the premise(s) from the later
statements. For each later statement, we explain how the statement is justified,
citing the rule and the earlier lines which have been used. These explanatory
comments are written in a column on the right-hand side. The final sentence
is the conclusion of the argument.

So far, we have only considered two rules: modus ponens and disjunctive syl-
logism. This isn’t enough. If we want to be able to prove every logical conse-
quence that our joint truth table method could prove, we need more rules. In
the rest of this chapter and in the following one, we will present more.

58 forallx : SFU

In designing a proof system—i.e., a system of inference rules—we could just
start with disjunctive syllogism and modus ponens. Whenever we discovered a
valid argument which could not be proven with rules we already had, we could
introduce new rules. Proceeding in this way, we would have an unsystematic
grab bag of rules. We might accidentally add some strange rules, and we would
surely end up with more rules than we need.

Instead, we will develop what is called a natural deduction system. In a
natural deduction system, there will be two rules for each logical operator: an
introduction rule that allows us to prove a sentence that has it as the main
logical operator and an elimination rule that allows us to prove something
given a sentence that has it as the main logical operator. In TFL, the main
logical operators are the truth-functional connectives.

In TFL, we treat the identity symbol as a logical symbol with a strict interpre-
tation—i.e., it always expresses the identity relation. Because of this, we will
also have introduction and elimination rules for identity. Finally, we will have
a reiteration rule. If you have shown something in the course of a proof, the
reiteration rule allows you to repeat it on a new line. Here is the reiteration
rule, which we abbreviate (R):

j P

k P R j

When we add a line to a proof, we write the rule that justifies that line. We also
write the numbers of the lines to which the rule was applied. The reiteration
rule above is justified by one line, the line that you are reiterating. The ‘R j’
on line k of the proof means that the line is justified by the reiteration rule (R)
applied to line j. Of course, ‘ j’ and ‘k’ are not numbers. Rather, they stand for
line numbers in a proof. When we define the rule, we use letters like ‘ j’ and ‘k’
to underscore the point that the rule may be applied at any step in a proof. If
you have Pa on line 8, you can reiterate it on line 15 at some later point in the
proof with the justification ‘R 8’.

Obviously, the reiteration rule will not allow us to show anything new. For
that, we will need more rules. In the coming section, we consider the rules for
conjunction. In subsequent sections, we consider the rules for disjunction and
identity, as well as one rule for the conditional.

5.1 Rules for conjunction

Think for a moment: What would you need to show in order to prove (Rac∧Th)?
Of course, you could show (Rac ∧ Th) by proving Rac and separately proving
Th. This holds even if the two conjuncts are not atomic sentences. If you
can prove (Pb ∨ a = c) and (Uea ∨ Oa), then you have effectively proven that

ch. 5 introducing proofs 59(
(Pb ∨ a = c) ∧ (Uea ∨Oa)

)
.

So, this will be our conjunction introduction rule, which we abbreviate (∧I):

j P

k Q

l (P ∧ Q) ∧I j, k

A line of proof must be justified by some rule, and here we have ‘∧I j, k.’ This
means: Conjunction introduction applied to line j and line k, where ‘ j’ and ‘k’
stand for real line numbers.

With the ∧I rule, P and Q can be any two statements—even complicated ones!
For example, we might use the rule like this:

. . .

. . .

23 (Rad→ Bh)

. . .

. . .

34 (a = b↔ a = c)

. . .

. . .

56
(
(Rad→ Bh) ∧ (a = b↔ a = c)

)
∧I 23, 34

Now, consider the elimination rule for conjunction. What are you entitled to
conclude from a sentence like (Rad ∧ Bh)? Surely, you are entitled to conclude
Rad; if (Rad∧Bh) were true, then Rad would be true. Similarly, you are entitled
to conclude Bh. This will be our conjunction elimination rule, which we
abbreviate (∧E):

j (P ∧ Q)

k P ∧E j

j (P ∧ Q)

k Q ∧E j

When you have a conjunction on some line of a proof, you can use ∧E to derive
either of the conjuncts. The ∧E rule requires only one sentence, so we write
one line number as the justification for applying it.

60 forallx : SFU

Even with just these two rules, we can provide some proofs. Consider this
argument.

(Rad ∧ Bh)
.˙. (Bh ∧ Rad)

The main logical operator in both the premise and conclusion is conjunction.
Since conjunction is symmetric, the argument is obviously valid. In order to
provide a proof, we begin by writing down the premise or premises. After
the premise(s), we draw a horizontal line—everything below this line must be
justified by a rule of proof.

So the beginning of the proof looks like this:

1 (Rad ∧ Bh)

From the premise, we can get each of the conjuncts by∧E. The proof now looks
like this:

1 (Rad ∧ Bh)

2 Rad ∧E 1

3 Bh ∧E 1

The rule ∧I requires that we have each of the conjuncts available somewhere
in the proof. They can be separated from one another, and they can appear in
any order. So by applying the ∧I rule to lines 3 and 2, we arrive at the desired
conclusion. The finished proof looks like this:

1 (Rad ∧ Bh)

2 Rad ∧E 1

3 Bh ∧E 1

4 (Bh ∧ Rad) ∧I 3, 2

This proof is trivial, but it shows how we can use rules of proof together to
demonstrate the validity of an argument form.

5.2 Rules for disjunction

The disjunction introduction rule (∨I) allows us to derive a disjunction if we
have one of the two disjuncts:

ch. 5 introducing proofs 61

j P

k (P ∨ Q) ∨I j

j Q

k (P ∨ Q) ∨I j

This is obviously a valid rule of inference. All it takes for a disjunction to be
true is for at least one of its conjuncts to be true. So, if P (or Q) were true, then
(P ∨ Q) would also be true.

Notice that the sentence you are introducing as the second disjunct can be any
sentence whatsoever. So, the following is a legitimate proof:

1 Rad

2
(
Rad ∨ (Tu↔ a = c)

)
∨I 1

It may seem odd that just by knowing Rad we can derive a conclusion that
includes sentences like Tu and a = c—sentences that have nothing to do with
Rad. Yet the conclusion follows immediately by ∨I. This is as it should be: The
truth conditions for the disjunction mean that, if P1n1 is true, then (P1n1∨P2n2)
is true regardless of what P2n2 is. So, the conclusion could not be false if the
premise were true; the argument is valid.

Now consider the disjunction elimination rule. What can you conclude from
(Rad ∨ Bh)? You cannot conclude Rad. It might be Rad’s truth that makes the
disjunction true, as in the example above, but it might not. From (Rad ∨ Bh)
alone, you cannot conclude anything about either Rad or Bh specifically. If you
also knew that Bh was false, however, then you would be able to conclude Rad.

This is just disjunctive syllogism, it will be the disjunction elimination rule
(∨E).

j (P ∨ Q)

k ¬Q

l P ∨E j, k

j (P ∨ Q)

k ¬P

l Q ∨E j, k

Let’s put the rules for disjunction to work in a longer proof. Let’s prove the
following inference:

(Rad ∨ Bh)
¬Rad

.˙.
(
Bh ∨ (Tu→ a = c)

)
As usual, we begin by writing down our premises or premises, followed by a
horizontal line:

62 forallx : SFU

1 (Rad ∨ Bh)

2 ¬Rad

The first thing we notice is that we can prove Bh by disjunctive syllogism,
which is also called ‘∨E’:

1 (Rad ∨ Bh)

2 ¬Rad

3 Bh ∨E 1, 2

From Bh we can infer
(
Bh∨(Tu→ a = c)

)
, which is the conclusion we ultimately

want. We are now able to complete the proof:

1 (Rad ∨ Bh)

2 ¬Rad

3 Bh ∨E 1, 2

4
(
Bh ∨ (Tu→ a = c)

)
∨I 3

5.3 A rule for conditionals

The introduction rule for the conditional is difficult; we will set it aside until
the next chapter. For now, we will use only the elimination rule.

Nothing follows from (Rad → Bh) alone, but if we have both (Rad → Bh) and
Rad, then we can conclude Bh. This rule, modus ponens, will be the conditional
elimination rule (→E).

j (P → Q)

k P

l Q →E j, k

Let’s put this rule to work in a longer proof. Suppose we wish to prove the
following inference:

(Ra→ Rb)
(Rb→ Rc)
Ra

ch. 5 introducing proofs 63

.˙. Rc

This can be done in two steps. The first conditional gets us from Ra to Rb.
The second conditional gets us from Rb to Rc. This is what it looks like when
written out in the proper format:

1 (Ra→ Rb)

2 (Rb→ Rc)

3 Ra

4 Rb →E 1, 3

5 Rc →E 2, 4

5.4 Rules for identity

Here is a logical truth: everything is identical to itself. For any object n, n is
identical to n. This is called the ‘reflexivity of identity’. Here is an example:
‘1 = 1’. Because ‘1 = 1’ is a logical truth, it is impossible for it to be false. And
since it is impossible for ‘1 = 1’ to be false, it is a logical consequence of any
sentence. So, we are justified to introduce a corresponding introduction rule
that will allow us to introduce identity statements like ‘1 = 1’ or ‘a = a’ at any
line in a proof. Such a rule will never lead us to an invalid step. (Remember:
we stipulated that individual constants uniquely refer.) So, this will be our
identity introduction rule, which we abbreviate (=I):

j n = n =I

As we said earlier line of a proof (other than the premises) must be justified by
some rule. Here, on line j, we have the rule ‘=I’. We also said earlier that we
need to cite the line number(s) on which the rule is applied. But we make an
exception with (=I). Since logical truths follow from any sentence, we do not
need to cite any line number when using the rule.

Next, consider what is called the indiscernibility of identicals. According to this
principle, if two things are identical, then whatever is true of one is also true
of the other. This is a logical truth. It is impossible for it to be false. If there
is something that is true of one but not the other, then those two things are
not identical. This means that we are justified to introduce the corresponding
identity elimination rule, which we abbreviate (=E):

64 forallx : SFU

j Pn

k n = m

l Pm =E j, k

Line j tells us that some object named n has the property P . Line k tells us that
the object named by ‘n ’ is identical to the object named by ‘m ’. Line l tells us
that, given lines j and k, and by the principle of the indiscernibility of identicals
(=E), m also has the property P .

Now that we have the rule for=E, we are now in a position to prove the validity
of argument C above, an argument whose validity couldn’t be established using
the method of truth tables.

1 Pa

2 a = b

3 Pb =E 1, 2

Here is a proof that uses both rules, showing that b = a follows from a = b.

1 a = b

2 a = a =I

3 b = a =E 1, 2

According to the premise, a is identical to b. This means that a and b share
the same properties. Line 2 states that a has the property of being identical
to a, which is justified by the reflexivity of identity. So, by the indiscernibility
of identicals, b has the property of being identical to a, which is our desired
conclusion.

5.5 Three more complex examples

Suppose we wish to prove the following inference:

(Rac ∧Ue)
(Rac→ Fah)
(Ue→ Kai)

.˙. (Fah ∧ Kai)

We can begin by writing down our premises:

ch. 5 introducing proofs 65

1 (Rac ∧Ue)

2 (Rac→ Fah)

3 (Ue→ Kai)

Now where should we begin? There’s nothing we can do with the conditionals
at the moment. But we can split the conjunction into its conjuncts, using the
(∧E) rule. This gives us:

1 (Rac ∧Ue)

2 (Rac→ Fah)

3 (Ue→ Kai)

4 Rac ∧E 1

5 Ue ∧E 1

Now that we’ve proven Rac and Ue, we can use (→E) twice, to prove Fah and
Kai:

1 (Rac ∧Ue)

2 (Rac→ Fah)

3 (Ue→ Kai)

4 Rac ∧E 1

5 Ue ∧E 1

6 Fah →E 2, 4

7 Kai →E 3, 5

Now that we’ve proven Fah and Kai, we can get their conjunction by (∧I), and
this completes the proof:

66 forallx : SFU

1 (Rac ∧Ue)

2 (Rac→ Fah)

3 (Ue→ Kai)

4 Rac ∧E 1

5 Ue ∧E 1

6 Fah →E 2, 4

7 Kai →E 3, 5

8 (Fah ∧ Kai) ∧I 6, 7

Suppose we wish to prove the following inference:

Rea

(
Rea→ (b = c ∨ Rae)

)
b , c

.˙. (Rea ∧ Rae)

The conclusion is a conjunction, so it’s a good bet that we’ll prove it using the
∧I rule. So, we want to prove two conjuncts. That is, we want to prove Rea and
Rae. Now, Rea is one of our premises, so no work is required there! However,
we do need to prove Rae, which is trickier. The first two premises give us
(b = c ∨ Rae) by→E, which looks to be a good start:

1 Rea

2
(
Rea→ (b = c ∨ Rae)

)
3 b , c

4 (b = c ∨ Rae) →E 1, 2

Now we notice that lines 3 and 4 get us Rae by ∨E (remember that b , c is just
shorthand for ¬b = c). From there, it is a short step to our desired conclusion:

ch. 5 introducing proofs 67

1 Rea

2
(
Rea→ (b = c ∨ Rae)

)
3 b , c

4 (b = c ∨ Rae) →E 1, 2

5 Rae ∨E 4, 3

6 (Rea ∧ Rae) ∧I 1, 5

Let’s finish the chapter with one more example. Let’s prove the following
inference:

Tu

(Tu→ Laa)

(
Laa→ (u = b ∨ Lba)

)
¬Lba

.˙.
(
a = a ∧ (b = b ∨ Tb)

)

We can see that two applications of→E can get us (u = b ∨ Lba):

1 Tu

2 (Tu→ Laa)

3
(
Laa→ (u = b ∨ Lba)

)
4 ¬Lba

5 Laa →E 1, 2

6 (u = b ∨ Lba) →E 3, 5

We can now see that line 4 is just the negation of one of the disjuncts on line 6.
So, by disjunctive syllogism we get u = b:

68 forallx : SFU

1 Tu

2 (Tu→ Laa)

3
(
Laa→ (u = b ∨ Lba)

)
4 ¬Lba

5 Laa →E 1, 2

6 (u = b ∨ Lba) →E 3, 5

7 u = b ∨E 6, 4

Now with the ∨I rule we get one of the conclusion’s conjuncts:

1 Tu

2 (Tu→ Laa)

3
(
Laa→ (u = b ∨ Lba)

)
4 ¬Lba

5 Laa →E 1, 2

6 (u = b ∨ Lba) →E 3, 5

7 u = b ∨E 6, 4

8 (u = b ∨ Tb) ∨I 7

Finally, we can get a = a with an application of =I, and our desired conclusion
is a short step away:

ch. 5 introducing proofs 69

1 Tu

2 (Tu→ Laa)

3
(
Laa→ (u = b ∨ Lba)

)
4 ¬Lba

5 Laa →E 1, 2

6 (u = b ∨ Lba) →E 3, 5

7 u = b ∨E 6, 4

8 (u = b ∨ Tb) ∨I 7

9 a = a =I

10
(
a = a ∧ (u = b ∨ Tb)

)
∧I 9, 8

Summary of logical notions

▷ A proof is a step-by-step demonstration that one statement (i.e., the con-
clusion) is a logical consequence of other statements (i.e., the premises).

▷ A natural deduction system consists in a fixed set of rules that are used
to construct formal proofs.

Summary of derivation rules in TFL covered in this
chapter

Reiteration (R)

j P

k P R j

Conjunction Introduction (∧I)

j P

k Q

l (P ∧ Q) ∧I j, k

70 forallx : SFU

Conjunction Elimination (∧E)

j (P ∧ Q)

k P ∧E j

j (P ∧ Q)

k Q ∧E j

Disjunction Introduction (∨I)

j P

k (P ∨ Q) ∨I j

j Q

k (P ∨ Q) ∨I j

Disjunction Elimination (∨E)

j (P ∨ Q)

k ¬Q

l P ∨E j, k

j (P ∨ Q)

k ¬P

l Q ∨E j, k

Conditional Elimination (→E)

j (P → Q)

k P

l Q →E j, k

Identity Introduction (=I)

j n = n =I

Identity Elimination (=E)

j Pn

k n = m

l Pm =E j, k

ch. 5 introducing proofs 71

Practice exercises

Part A * Identify the mistake in each of the following “proofs”.

1.

1 (Pa ∧ ¬Qb)

2
(
Pa→ (Qb ∧ Rc)

)
3 (Qb ∧ Rc)

4 Pa →E 2, 3

2.

1 Qee

2
(
(Qee ∨ Rmn)→ Pa

)
3 (Qee ∨ Rmn) ∨I 1

4 Pa →E 2, 3

5
(
(Qee ∨ Rmn) ∨ Pa

)
∨I 3, 4

3.

1 Hn

2 (Kb ∧ Rm)

3
(
(Hn ∧ Kb) ∧ Rm

)
∧I 1, 2

*Many thanks to Kesavan Thanagopal for offering these exercises, originally created for his
PHIL110 Introduction to Logic and Reasoning tutorials.

72 forallx : SFU

4.

1 r = s

2
(
r = s→ (¬Mp ∨ Cs)

)
3 Mp

4 (¬Mp ∨ Cs) →E 1, 2

5 ¬¬Mp From 3

6 Cs ∨E 4, 5

7 (r , s ∨ Cs) ∨I 6

Part B Here are four incomplete proofs. In each case, provide a justification
(rule and line numbers) for each line of proof that requires one.

1.

1 (Qee ∧ Ga)

2 (Hb ∧ Rde)

3 Ga

4 Hb

5 (Ga ∧Hb)

3.

1 (Qee→ ¬Ga)

2 (Hb ∧Qee)

3
(
Ga ∨ (Gb ∧ Gc)

)
4 Qee

5 ¬Ga

6 (Gb ∧ Gc)

7 Gc

2.

1 (Hb ∧ Rde)

2 Hb

3 (Hb ∨ a = b)

4.

1 (a , b→ a = c)

2
(
Pa ∧ (a = b ∨ Rad)

)
3 a , b

4 Pa

5 (a = b ∨ Rad)

6 Rad

7 a = c

8 Pc

9 Rcd

10 (Pc ∧ Rcd)

11 b = b

12
(
b = b ∧ (Pc ∧ Rcd)

)

ch. 5 introducing proofs 73

Part C Here are six inferences. In each case, show that the inference is valid by
providing a proof.

1. Ba(
Ba→ (Cga ∧De)

)
.˙. Cga

2.
(
(Tea ∨Mai)→ Uc

)
Tea

.˙. Uc

3. Pa

Qg

.˙.
(
(Pa ∧Qg) ∨ Tjk

)
4.

(
(He ∧ Sea) ∨ See

)
(
Gb→ ¬(He ∧ Sea)

)
(Gb ∧He)

.˙. (He ∧ See)

5. d , f

(a = b ∨ d = f)

(a = b→ Tab)

(Tbb→ ¬Hu)

(Hu ∨Hi)

.˙. (Hi ∧ c = c)

6.
(
(Te ∨ Ga) ∨ Lo

)
(
Rbc→ ¬(Te ∨ Ga)

)
(
Lo→ (¬Te ∧ ¬Ga)

)
Raa

a = b

b = c

.˙. ¬Ga

Chapter 6

Proofs involving conditionals
and negation

6.1 Conditionals

You already know the elimination rule for the conditional. In this section, we
discuss the introduction rule.

Consider this argument:

(Te ∨ Ra)
.˙. (¬Te→ Ra)

The argument is certainly a valid one. What should the conditional introduc-
tion rule be, such that we can draw this conclusion?

We begin the proof by writing down the premise of the argument and drawing
a horizontal line, like this:

1 (Te ∨ Ra)

If we had ¬Te as a further premise, we could derive Ra by the ∨E rule. We
do not have ¬Te as a premise of this argument, nor can we derive it directly
from the premise we do have—so we cannot simply prove Ra. What we will
do instead is start a subproof, a proof within the main proof. When we start
a subproof, we draw another vertical line to indicate that we are no longer in
the main proof. Then we write in an assumption for the subproof. This can
be anything we want. Here, it will be helpful to assume ¬Te. Our proof now
looks like this:

74

ch. 6 proofs involving conditionals and negation 75

1 (Te ∨ Ra)

2 ¬Te

It is important to notice that we are not claiming to have proven ¬Te. We do
not need to write in any justification for the assumption line of a subproof. You
can think of the subproof as posing the question: What could we show if ¬Te
were true? For one thing, we can derive Ra. So we do:

1 (Te ∨ Ra)

2 ¬Te

3 Ra ∨E 1, 2

This has shown that if we had ¬Te as a premise, then we could prove Ra. In
effect, we have proven (¬Te→ Ra). So, the conditional introduction rule (→I)
will allow us to close the subproof and derive (¬Te → Ra) in the main proof.
Our final proof looks like this:

1 (Te ∨ Ra)

2 ¬Te

3 Ra ∨E 1, 2

4 (¬Te→ Ra) →I 2–3

Notice that the justification for applying the →I rule is the entire subproof.
Usually, this will be more than two lines. The dash between the numbers
indicates that we are citing the entire subproof as justification.

It may seem as if the ability to assume anything at all in a subproof would lead
to chaos: Does it allow you to prove any conclusion from any premises? The
answer is no, it does not. Consider this proof:

1 P

2 Q

3 Q R 2

It may seem as if this is a proof that you can derive any conclusions Q from
any premise P . When the vertical line for the subproof ends, the subproof is
closed. In order to complete a proof, you must close all of the subproofs. And

76 forallx : SFU

you cannot close the subproof and use the R rule again on line 4 to derive Q in
the main proof. Once you close a subproof, you cannot refer back to individual
lines inside it.

Closing a subproof is called ‘discharging the assumptions of that subproof’.
So, we can put the point this way: You cannot complete a proof until you
have discharged all of the assumptions besides the original premises of the
argument.

Of course, it is legitimate to do this:

1 P

2 Q

3 Q R 2

4 (Q → Q) →I 2–3

This should not seem so strange, though. Since sentences of the form (Q → Q)
are tautologies, no particular premises are required to validly derive them.
(Indeed, as we will see, tautologies follow from any or no premise.)

Put in a general form, the→I rule looks like this:

j P want Q

k Q

l (P → Q) →I j–k

When we introduce a subproof, we typically write what we want to derive in
the column. This is just so that we do not forget why we started the subproof if
it goes on for five or ten lines. There is no ‘want’ rule. It is a note to ourselves
and not formally part of the proof.

Although it is always permissible to open a subproof with any assumption you
please, there is some strategy involved in picking a useful assumption. Start
a subproof with an arbitrary, wacky assumption would just waste lines of the
proof. In order to derive a conditional by the→I rule, for instance, you must
assume that antecedent of the conditional in a subproof.

The→I rule also requires that the consequent of the conditional be the last line
of the subproof. It is always permissible to close a subproof and discharge its
assumptions, but it will not be helpful to do so until you get what you want.

Now that we have rules for the conditional, consider this argument:

(Pa→ a = b)

ch. 6 proofs involving conditionals and negation 77

(a = b→ Rab)

.˙. (Pa→ Rab)

We begin the proof by writing the two premises as assumptions. Since the
main logical operator in the conclusion is a conditional, we can expect to use
the→I rule to derive it. For that we need to do a subproof—so we write in the
antecedent of the conditional as assumption of a subproof:

1 (Pa→ a = b)

2 (a = b→ Rab)

3 Pa want Rab

We made Pa available by assuming it in a subproof, allowing us to use→E on
the first premise. This gives us a = b, which allows us to use→E on the second
premise. Having derived Rab, we close the subproof. By assuming Pa we were
able to prove Rab, so we apply the→I rule and finish the proof.

1 (Pa→ a = b)

2 (a = b→ Rab)

3 Pa want Rab

4 a = b →E 1, 3

5 Rab →E 2, 4

6 (Pa→ Rab) →I 3–5

6.2 Biconditional

The rules for the biconditional will be like double-barreled versions of the rules
for the conditional.

In order to derive (Te ↔ Wa), for instance, you must be able to prove Wa by
assuming Te and prove Te by assuming Wa. The biconditional introduction
rule (↔I) requires two subproofs. The subproofs can come in any order, and
the second subproof does not need to come immediately after the first—but
schematically, the rule works like this:

78 forallx : SFU

h P want Q

i Q

j Q want P

k P

l (P ↔ Q) ↔I h–i, j–k

The biconditional elimination rule (↔E) lets you do a bit more than the condi-
tional elimination rule. If you have the left-hand subsentence of the bicondi-
tional, you can derive the right-hand subsentence. If you have the right-hand
subsentence, you can derive the left-hand subsentence. This is the rule:

j (P ↔ Q)

k P

l Q ↔E j, k

j (P ↔ Q)

k Q

l P ↔E j, k

6.3 Negation

Here is a simple mathematical argument in English:

Assume there is some greatest natural number. Call it A. That
number plus one is also a natural number. Obviously, A+1 > A. So
there is a natural number greater than A. This is impossible, since
A is assumed to be the greatest natural number. Therefore, there is
no greatest natural number.

This argument form is traditionally called a ‘reductio’. Its full Latin name is
‘reductio ad absurdum’, which means ‘reduction to absurdity’. In a reductio,
we assume something for the sake of argument—for example, that there is
a greatest natural number. Then we show that the assumption leads to two
contradictory sentences—for example, that A is the greatest natural number
and that it is not. In this way, we show that the original assumption must have
been false.

The basic rules for negation will allow for arguments like this. If we assume
something and show that it leads to contradictory sentences, then we have
proven the negation of the assumption. This is the negation introduction (¬I)
rule:

ch. 6 proofs involving conditionals and negation 79

j P for reductio

k Q

k + 1 ¬Q

k + 2 ¬P ¬I j–k + 1

For the rule to apply, the last two lines of the subproof must be an explicit
contradiction: some sentence followed on the next line by its negation. We
write ‘for reductio’ as a note to ourselves, a reminder of why we started the
subproof. It is not formally part of the proof, and you can leave it out if you
find it distracting.

To see how the rule works, suppose we want to prove an instance of the law
of non-contradiction: ¬(Ra ∧ ¬Ra). We can prove this without any premises
by immediately starting a subproof. We want to apply ¬I to the subproof, so
we assume (Ra ∧ ¬Ra). We then get an explicit contradiction by ∧E. The proof
looks like this:

1

2 (Ra ∧ ¬Ra) for reductio

3 Ra ∧E 2

4 ¬Ra ∧E 2

5 ¬(Ra ∧ ¬Ra) ¬I 2–4

The ¬E rule will work in much the same way. If we assume ¬P and show that
it leads to a contradiction, we have effectively proven P . So, the rule looks like
this:

j ¬P for reductio

k Q

k + 1 ¬Q

k + 2 P ¬E j–k + 1

80 forallx : SFU

6.4 Russian Doll proofs

We sometimes construct proofs in which one subproof appears inside another.
We could call these ‘Russian Doll proofs’.

Here is an example. You can establish using a truth table that the following
inference is valid:

(
(Ra ∧ Teh)→ Sb

)
.˙.

(
Ra→ (Teh→ Sb)

)
To prove this, we begin as usual by writing down our premise:

1
(
(Ra ∧ Teh)→ Sb

)
Now our conclusion is a conditional, so it’s a good bet that we’ll prove it using
→I. So, our proof will in the end look something like this:

1
(
(Ra ∧ Teh)→ Sb

)
2 Ra

. . .

? (Teh→ Sb)(
Ra→ (Teh→ Sb)

)
→I 2–?

To complete the proof, we need to fill in the blank with a proof of (Teh→ Sb).
How will we prove this? Well, this is another conditional, so it’s likely that
we’ll want to use→I again. So, our proof will look like this:

1
(
(Ra ∧ Teh)→ Sb

)
2 Ra

3 Teh

. . .

?? Sb

? (Teh→ Sb) →I 3–??(
Ra→ (Teh→ Sb)

)
→I 2–?

To complete the thing, all we need do is fill in the blank—which turns out not
to be so hard:

ch. 6 proofs involving conditionals and negation 81

1 ((Ra ∧ Teh)→ Sb)

2 Ra

3 Teh

4 (Ra ∧ Teh) ∧I 2, 3

5 Sb →E 1, 4

6 (Teh→ Sb) →I 3–5

7 (Ra→ (Teh→ Sb)) →I 2–6

6.5 Proving tautologies and tautological equivalences

We’ve seen in chapter three that we can use truth tables to determine whether
a sentence is a tautology or whether two or more sentences are tautologically
equivalent. Now that we’ve got a truth-functional system of natural deduction,
we are able to establish these things in our proof system.

We defined a tautology as a sentence whose completed truth table receives
all Ts under the sentence’s main connective. This means that a tautology is a
sentence that is necessarily true simply in virtue of the meanings of the truth-
functional connectives. Since the rules for our proof system are also grounded
in the meanings of the connectives, we should be able to derive tautologies
from any set of premises. Indeed, we can prove tautologies from no premises.
Consider the tautology (Pa ∨ ¬Pa). The following proof shows how to derive
the sentence from no premise:

1

2 ¬(Pa ∨ ¬Pa)

3 ¬Pa

4 (Pa ∨ ¬Pa) ∨I 3

5 ¬(Pa ∨ ¬Pa) R 2

6 Pa ¬E 3–5

7 (Pa ∨ ¬Pa) ∨I 6

8 ¬(Pa ∨ ¬Pa) R 2

9 (Pa ∨ ¬Pa) ¬E 2–8

82 forallx : SFU

Similarly, we saw in chapter three that two or more sentences are tautologically
equivalent just in case they share the same truth value in every row of their
joint truth table. Consider the following sentences:

1. ¬(Ra ∧ Gb)
2. (¬Ra ∨ ¬Gb)

A joint truth table will reveal that 1 and 2 are tautologically equivalent. Since
they are tautologically equivalent, every row that assigns a T to 1 also assigns
a T 2. So, 2 is a tautological consequence of 1. Furthermore, every row that
assigns a T to 2 also assigns a T to 1. So, 1 is a tautological consequence of 2.
Our proof system will allow us to derive 1 from 2 and vice versa, thus showing
that they are tautologically equivalent. Indeed, since 1 and 2 are tautologically
equivalent, we can derive the sentence

(
¬(Ra ∧Gb) ↔(¬Ra ∨¬Gb)

)
from no

premises. We will leave this for practice exercise G.

Summary of derivation rules in TFL covered in this
chapter

Conditional Introduction (→I)

j P

k Q

l (P → Q) →I j–k

Biconditional Introduction (↔I)

h P

i Q

j Q

k P

l (P ↔ Q) ↔I h–i, j–k

ch. 6 proofs involving conditionals and negation 83

Biconditional Elimination (↔E)

j (P ↔ Q)

k P

l Q ↔E j, k

j (P ↔ Q)

k Q

l P ↔E j, k

Negation Introduction (¬I)

j P for reductio

k Q

k + 1 ¬Q

k + 2 ¬P ¬I j–k + 1

Negation Elimination (¬E)

j ¬P for reductio

k Q

k + 1 ¬Q

k + 2 P ¬E j–k + 1

84 forallx : SFU

Practice exercises

Part A * Identify the mistake in each of the following “proofs”.

1.

1 (Rab ∨Map)

2 ¬Rab

3 Map ∨E 1, 2

4 (¬Rab→Map) →I 2–3

2.

1 ¬Rt

2 (Rt ∨ p = q)

3 p = q ∨E 1, 2

4
(
(Rt ∨ p = q)→ p = q

)
→I 2, 3

3.

1
[
Ap→

(
(Bs ∧ Emp) ∨ ¬Cn

)]
2 Ap

3 ¬¬Cn

4 Dr

5
(
(Bs ∧ Emp) ∨ ¬Cn

)
→E 1, 2

6 (Bs ∧ Emp) ∨E 3, 5

7 Bs ∧E 6

8 Emp ∧E 6

9 (Dr→ Emp) →I 4–8

10
(
(Dr→ Emp) ∧ Bs

)
∧I 7, 9

*Many thanks to Kesavan Thanagopal for offering these exercises, originally created for his
PHIL110 Introduction to Logic and Reasoning tutorials.

ch. 6 proofs involving conditionals and negation 85

4.

1
(
Pab→ (Qee ∧ Rst)

)
2 Pab

3 (Qee ∧ Rst) →E 1, 2

4 Qee ∧E 3

5 Rst ∧E 3

6 (Pab→ Qee) →I 2–4

7 (Pab→ Rst) →I 2–5

8
(
(Pab→ Qee) ∧ (Pab→ Rst)

)
∧I 6, 7

Part B Consider the following inferences. In each case, establish that the
inference is valid by providing a natural deduction proof.

1.
(
Tu→ (Rc ∧Oae)

)
.˙. (Tu→ Rc)

2. (Tu→ Rc)

.˙.
(
Tu→ (Rc ∨ a = a)

)
3. Gb

.˙.
(
a = b→ (Gb ∧ a = b)

)
Part C Consider the following inferences. In each case, establish that the
inference is valid by providing a natural deduction proof.

1. ¬Tu

.˙. ¬(Tu ∧ a = b)

2. ¬(Ugg ∨ Ta)

.˙. ¬Ugg

3. ¬Ta

(a = b→ Ta)

.˙. a , b

86 forallx : SFU

Part D Consider the arguments in bold below. In each case, symbolize the
argument, and establish whether it’s valid, explaining your answer in detail.

1. At the Midsummer’s Fair in 16th century Paris, cat-burning
was a regular attraction. A large net containing many cats
would be slowly lowered over a bonfire. Spectators would
delight in watching the animals screech as they slowly burnt to
death. Today, we all recognize that this is barbaric. However,
many people fail to understand that similarly cruel practices
are common in the meat industry today. For example, in the
USA every year tens of millions of piglets are castrated, without
pain relief. If the Parisian cat-burnings were immoral, as they
surely were, modern pig farming is immoral. And if modern
pig farming is immoral, it is surely immoral to buy pork. So,
it is immoral to buy pork.

2. Research in history has established that moral rules have changed
over the centuries. For example, the institution of slavery was
once widely accepted, but now slavery is forbidden and de-
plored everywhere. Moreover, research in anthropology has
established that moral rules vary across the world today. For
example, in some places it is considered okay to drink alcohol,
but in other places it is forbidden. This has important implica-
tions for our understanding of the nature of morality. If moral
rules were created by God, then they would be the same in
all times and places. But as we have seen, moral rules are not
the same in all times and places. Now, clearly, either moral
rules were created by God or they are a social construction.
So, moral rules are a social construction.

3. If my passport is on the desk in my office, I’ll miss my flight.
And, you know, my passport is on the desk in my office,
unless of course I left it at home. But if my passport were at
home, my wife would have found it, and she hasn’t. So, I’m
going to miss my flight.

Part E Consider the following two arguments. One is valid; the other is invalid.

Ra, (Ra→ Tu) .˙.
(
(Ra ∨ Gc) ∧ Tu

)
Ra, (Ra→ Tu) .˙.

(
(Ra ∧ Gc) ∧ Tu

)
Give a proof to establish the validity of one argument. Use a truth table to
establish the invalidity of the other.

Part F Consider the following inferences. In each case, establish that the infer-
ence is valid by providing a natural deduction proof.

ch. 6 proofs involving conditionals and negation 87

1. (Ra→ (b = c ∧ c = d)) .˙.
(
(Ra→ b = c) ∧ (Ra→ c = d)

)
2. ¬(Ra ∨ Gb) .˙. (¬Ra ∧ ¬Gb)

3. (¬Ra ∧ ¬Gb) .˙. ¬(Ra ∨ Gb)

Part G Using a natural deduction proof, show that the following statement can
be derived using no premises at all. (challenging)

(
¬(Ra ∧ Gb)↔ (¬Ra ∨ ¬Gb)

)

Part II

First-order logic

88

Chapter 7

Introducing the quantifiers

7.1 Introduction

In this chapter, we introduce a logical language called FOL, which is an ex-
tension of TFL. It is a version of first-order logic, which along with the truth-
functional connectives and the identity symbol, includes quantifiers like all
and some. Because of this, it is sometime called ‘quantified’ or ‘predicate logic’.
‘First-order’ refers to the kind of things over which we can quantify. In FOL,
we quantify over individual objects or things. FOL affords us with a gain in
expressive power; we can thus prove more things in FOL than we could prove
in TFL.

Suppose we are talking about everyone in our logic class. Now, consider the
following argument, which is valid in English:

If everyone knows logic, then either no one will be confused or
everyone will. Everyone will be confused only if we try to believe a
contradiction. Everyone in our logic class knows logic. Therefore, if
we don’t try to believe a contradiction, then no one will be confused.

We quickly run into problems when we try to translate this argument in TFL.
It is easy enough to start our symbolization key with a list of predicates:

Lx: x knows logic
Cx: x is confused
Bx: x tries to believe a contradiction

One initial problem is that the argument doesn’t contain any singular term. It
might be tempting to simply treat ‘everyone’ and ‘no one’ as singular terms
and add the following to our symbolization key:

89

90 forallx : SFU

e: everyone
n: no one

The translation would be something like this:

(
Le→ (Cn ∨ Ce)

)
(Ce→ Be)
Le

.˙. (¬Be→ Cn)

As it turns out, this is a valid argument in TFL. (You can either do a joint truth
table to check for this or construct in a proof in our proof system.) But we
cannot treat ‘everyone’ and ‘no one’ as singular terms since neither expression
refers to a specific individual. So while the argument is valid in TFL, it is not a
correct translation of the argument given in English above.

That we cannot treat quantified phrases as singular terms becomes even clearer
when we consider another argument that is valid in English:

Willard is a logician. All logicians wear funny hats. So, Willard
wears a funny hat.

Now consider the following symbolization key:

Lx: x is a logician
Fx: x wears a funny hat

i: Willard
a: all

One might be tempted to treat ‘all’ as a singular term and translate the argument
in the following way:

Li
(La→ Fa)

.˙. Fi

The problem is that this argument is clearly invalid in TFL. So, something has
gone very wrong. We started with a valid argument in English and ended up
with an invalid argument in TFL.

The problem is that the symbolization in TFL leaves out a very important aspect
of the argument’s structure: it overlooks quantifier structure. The sentence ‘All
logicians wear funny hats’ is about both logicians and hat-wearing; it is not

ch. 7 introducing the quantifiers 91

about some individual named ‘all’. By not translating this structure, we lose
the connection between Willard’s being a logician and Willard’s wearing a hat.
This tells us that we cannot treat quantifiers as singular terms; we need to find
a way to capture their logical structure.

The mistake we’ve made while symbolizing both arguments is a natural one.
Atomic sentences in TFL are composed of n-ary predicates and n terms, where
the terms in question are individual constants. In translating English sentences
into TFL, we are forced to look for constants even when there are none. But
while we’ve made mistakes, these are nevertheless the best symbolizations we
can give for these arguments in TFL. So, clearly, we need something better.

In order to symbolize arguments that rely on quantifier structure, we need to
develop a different logical language. We will call this language ‘first-order
logic’ (FOL). FOL includes TFL, but also contains a universal and an existential
quantifier. We introduce these two quantifiers in the next section.

7.2 The quantifiers

Suppose we have the following symbolization key:

Ax: x is angry
Hx: x is happy

Txy: x is taller than y
d: Donald
g: Gregor

m: Marybeth

Now consider the following sentences:

1. Everyone is happy.
2. Everyone loves Donald.
3. Someone is angry.

It might be tempting to translate sentence 1 as
(
(Hd ∧Hg) ∧Hm

)
. Yet, this

would only say that Donald, Gregor, and Marybeth are happy. We want to
say that everyone is happy—including people whose names we don’t know.
In order to do this, we introduce the ‘∀’ symbol. This is called the universal
quantifier.

The universal quantifier must always be followed by a variable and a formula
(we will give a precise definition of a formula and a sentence in FOL later in
the chapter). We can translate sentence 1 as ∀x Hx. Paraphrased in English, it
means ‘For all x, x is happy’.

92 forallx : SFU

Sentence 2 can be paraphrased as ‘For all x, x loves Donald’. This translates as
∀x Lxd.

In the quantified sentences, the variable x is serving as a kind of placeholder.
The expression ∀x means that you can pick out anyone and put them in as
x. There is no special reason to use x rather than some other variable. The
sentence ∀x Hx means exactly the same thing as ∀y Hy, ∀z Hz, and ∀x5 Hx5.

To translate sentence 3, we introduce another new symbol: the existential
quantifier ‘∃’, which roughly corresponds to the English words ‘something’
or ‘at least one thing’. Like the universal quantifier, the existential quantifier
requires a variable. Sentence 3 can be translated as ∃x Ax. This can be para-
phrased in English as ‘for some x, x is angry’. More precisely, it means that
there is at least one angry person.

Consider these further sentences:

4. No one is angry.
5. There is someone who is not happy.
6. Not everyone is angry.

Sentence 4 can be paraphrased as ‘It is not the case that someone is angry’.
This can be translated using negation and an existential quantifier: ¬∃x Ax.
We could also interpret sentence 4 as ‘Everyone is not angry’. With this in
mind, it can be translated using negation and a universal quantifier: ∀x¬Ax.
More generally, and as we’ll in chapter 9, sentences of forms¬∃x Ax and∀x¬Ax
are logically equivalent.

Sentence 5 is most naturally paraphrased as ‘There is some x such that x is not
happy.’ This becomes ∃x¬Hx. Equivalently, we could write ¬∀x Hx.

Sentence 6 is most naturally translated as ¬∀x Ax. Again, as we will see later
on, this is logically equivalent to ∃x¬Ax.

7.3 Universe of discourse

Given the symbolization key we’ve been using, ∀x Hx means ‘Everyone is
happy.’ Who is included in this everyone? When we use sentences like this in
English, we usually do not mean everyone alive on the Earth. We certainly
don’t mean everyone who was ever alive and who will ever live. We mean
something more modest: everyone in the building, everyone in the class, or
everyone in the room.

In order to eliminate this ambiguity, we will need to specify a universe of
discourse—abbreviated ‘UD’. The UD is the set of things that we are talking
about and over which we can quantify. So, if we want to talk about people

ch. 7 introducing the quantifiers 93

in Chicago, we define the UD to be people in Chicago. We write this at the
beginning of the symbolization key, like this:

UD: People in Chicago

The quantifiers range over the universe of discourse. Given this UD, ∀x means
‘Everyone in Chicago’ and ∃x means ‘Someone in Chicago’. Each constant
names some member of the UD, so we can only use this UD with the symbol-
ization key above if Donald, Gregor, and Marybeth are all in Chicago. If we
want to talk about people in places besides Chicago, then we need a different
UD that includes them.

In FOL, the UD must be non-empty; that is, it must include at least one thing.
It is possible to construct formal languages that allow for empty UDs, but this
introduces complications.

Even allowing for a UD with just one member can produce some strange
results. Suppose we have this as a symbolization key:

UD: The Eiffel Tower
Px: x is in Paris

The sentence ∀x Px might be paraphrased in English as ‘Everything is in Paris.’
Yet, that would be misleading. It means that everything in the UD is in Paris.
This UD contains only the Eiffel Tower, so with this symbolization key, ∀x Px
just means that the Eiffel Tower is in Paris.

7.4 Translating to FOL

We now have all of the pieces of FOL. Translating more complicated sentences
will only be a matter of knowing the right way to combine predicates, constants,
quantifiers, variables, and connectives. Consider these sentences:

7. Every coin in my pocket is a quarter.
8. Some coin on the table is a dime.
9. Not all the coins on the table are dimes.

10. None of the coins in my pocket are dimes.

In providing a symbolization key, we need to specify a UD. Since we are talking
about coins in my pocket and on the table, the UD must at least contain all of
those coins. Since we are not talking about anything besides coins, we let the
UD be all coins. Since we are not talking about any specific coins, we do not
need to define any constant. So, we use this key:

94 forallx : SFU

UD: All coins
Px: x is in my pocket
Tx: x is on the table
Qx: x is a quarter
Dx: x is a dime

Sentence 7 is most naturally translated with a universal quantifier. The univer-
sal quantifier says something about everything in the UD, not just about the
coins in my pocket. Sentence 7 means that, for any coin, if that coin is in my
pocket, then it is a quarter. So, we can translate ∀x (Px→ Qx).

Since sentence 7 is about coins that are both in my pocket and that are quarters,
it might be tempting to translate it using a conjunction. However, the sentence
∀x (Px ∧Qx) would mean that everything in the UD is both in my pocket and
a quarter: All the coins that exist are quarters in my pocket.

This would be a crazy thing to say, and would mean something very different
than sentence 7.

Sentence 8 is most naturally translated with an existential quantifier. It says
that there is some coin which is both on the table and which is a dime. So, we
can translate it as ∃x (Tx ∧Dx).

Notice that we needed to use a conditional with the universal quantifier, but
we used a conjunction with the existential quantifier. What would it mean to
write ∃x (Tx→ Dx)? Probably not what you think. It means that there is some
member of the UD which would satisfy the subformula; roughly speaking,
there is some a such that (Ta → Da) is true. In TFL, (Ta → Da) is logically
equivalent to (¬Ta ∨ Da), and this will also hold in FOL. So ∃x (Tx → Dx) is
true if there is some a such that (¬Ta∨Da); i.e., it is true if some coin is either not
on the table or is a dime. Of course, there is a coin that is not on the table—there
are coins in lots of other places. So ∃x (Tx→ Dx) is trivially true. A conditional
will usually be the natural connective to use with a universal quantifier, but
a conditional within the scope of an existential quantifier can do very strange
things. As a general rule, do not put conditionals in the scope of existential
quantifiers unless you are sure that you need one.

Sentence 9 can be paraphrased as, ‘It is not the case that every coin on the table
is a dime.’ So, we can translate it as ¬∃x (Tx∧Dx). You might look at sentence
9 and paraphrase it instead as, ‘Some coin on the table is not a dime.’ You
would then translate it as ∃x (Tx ∧ ¬Dx). Although it is probably not obvious,
these two translations are logically equivalent.

Sentence 10 can be paraphrased as, ‘It is not the case that there is some dime
in my pocket.’ This can be translated as ¬∃x (Px ∧ Dx). It might also be
paraphrased as ‘Everything in my pocket is a non-dime’ and then could be
translated as ∀x (Px→ ¬Dx). Again, the two translations are logically equiva-
lent. Both are correct translations of sentence 10.

ch. 7 introducing the quantifiers 95

We can now translate the arguments from pp. 87-8, the ones that motivated
the need for quantifiers:

Willard is a logician. All logicians wear funny hats. So, Willard
wears a funny hat.

Let’s work with the following symbolization key:

UD: People
Lx: x is a logician
Fx: x wears a funny hat
w: Willard

Translating, we get:

Lw
∀x (Lx→ Fx)

.˙. Fw

The other argument was:

If everyone knows logic, then either no one will be confused or
everyone will. Everyone will be confused only if we try to believe
a contradiction. This is a logic class, so everyone knows logic.
Therefore, if we don’t try to believe a contradiction, then no one
will be confused.

Here is a symbolization key:

UD: People in this class
Lx: x knows logic
Cx: x is confused
Bx: x tries to believe a contradiction

Translating, we get:

(
∀x Lx→ (¬∃y Cy ∨ ∀z Cz)

)
(∀x Cx→ ∀y By)
∀x Lx

.˙. (∀x¬Bx→ ¬∃y Cy)

96 forallx : SFU

Notice that we’ve used different variables in the antecedents and consequents
of the first two premises and the conclusion. Strictly speaking, we didn’t need
to do this, but it is good practice: it is potentially confusing to give one variable
two different jobs in one statement.

Both arguments in FOL capture the structure that was left out of the TFL
translations, and both arguments are valid in FOL.

7.5 Picking a UD

We said earlier that if you are only talking about a specific subset of things in
the world (e.g., coins), a natural choice for a UD is simply the set of all coins.
But we could have made a different choice. We could have let the UD be the
set of all things.

UD: Everything

This is particularly useful if you want to talk about a wider range of disparate
things. Even with such a UD, we can translate sentences 7 – 10 into FOL. In
order to do that, we would simply need to add to our symbolization key a
symbol that allows us to talk about the property of being a coin:

Cx: x is a coin
Px: x is in my pocket
Tx: x is on the table
Qx: x is a quarter
Dx: x is a dime

A paraphrase of sentence 7 would be ‘For any object x, if x is a coin and x is in my
pocket, then x is a quarter’. The FOL translation would be ∀x

(
(Cx∧Px)→ Qx

)
.

Sentences 8 – 10 could be translated thusly:

11. ∃x
(
(Cx ∧ Tx) ∧Dx

)
12. ¬∀x

(
(Cx ∧ Tx)→ Dx

)
13. ¬∃x

(
(Cx ∧ Tx) ∧Dx

)

ch. 7 introducing the quantifiers 97

7.6 Sentences of FOL

In this section we provide a formal definition of a sentence of FOL. We first
begin by giving a recursive definition of a well-formed formula (wff).

There are six kinds of symbols in FOL:

Predicates with subscripts, as needed A, B, C2, . . ., Z, =
Constants with subscripts, as needed a, b, c, . . ., w, 1, 2, . . .
Variables with subscripts, as needed x, y, z, x1, y1, z1, x2, . . .
Connectives ¬, ∧, ∨,→,↔
Parentheses and brackets (,), [,]
Quantifiers ∀, ∃

By definition, a term of FOL is either a constant or a variable.

An atomic formula of FOL is an n-ary predicate followed by n terms.

With this in mind, we can move on to give a recursive definition of a wff:

1. Every atomic formula is a wff.

2. If A is a wff, then ¬A is a wff.

3. If A and B are wffs, then (A ∧ B) is a wff.

4. If A and B are wffs, then (A ∨ B) is a wff.

5. If A and B are wffs, then (A → B) is a wff.

6. If A and B are wffs, then (A ↔ B) is a wff.

7. If A is a wff, x is a variable, and A contains no quantified wff with x
already bound by a quantifier, then ∀x A is a wff.

8. If A is a wff, x is a variable, and A contains no quantified wff with x
already bound by a quantifier, then ∃x A is a wff.

9. All and only wffs of FOL can be generated by applications of these rules.

Notice that ‘x ’ and ‘y ’ that appear in the definition above are not the variables
‘x’ and ‘y’. They are meta-variables that stand for any variable of FOL. So,
∀x Ax is a wff, but so are ∀y Ay, ∀x4 Ax4, and ∀z9 Az9.

Now, that we’ve got a definition of a wff, we can move on to give a definition
of a sentence of FOL. First, note that a sentence is something can be either true
or false. In TFL, every wff was a sentence. This will not be the case in FOL.
Consider the following symbolization key:

98 forallx : SFU

UD: People
Lxy: x loves y

b: Boris

Consider the expression Lzz. It is an atomic formula: a binary predicate
followed by two terms. All atomic formulas are wffs, so Lzz is a wff. Does it
mean anything? You might think that it means that z loves himself in the same
way that Lbb means that Boris loves himself. Yet, z is a variable; it does not
name some person that way a constant would. The wff does not tell us how to
interpret z. Does it mean everyone? Anyone? Someone? If we had a quantifier
in front, it would tell us how to interpret z. For instance, ∃z Lzz would mean
that someone loves themselves.

In order to make sense of a variable, we need a quantifier to tell us how to
interpret that variable. The scope of a quantifier is the part of the formula
where the quantifier tells us to interpret the variable; it is the subformula for
which the quantifier is the main logical operator.

In order to be precise about this, we define a bound variable to be an occurrence
of a variable x that is within the scope of a quantifier. A free variable is an
occurrence of a variable that is not bound.

For example, consider the wff
(
∀x (Rx ∨ Dy) → ∃z (Ex → Lzx)

)
. The scope of

the universal quantifier is (Rx ∨ Dy), so the first x is bound by the universal
quantifier, but the second and third xs are free. No quantifier binds the variable
y, so y is free. The scope of the existential quantifier is (Ex → Lzx), so the
occurrence of z is bound by it.

We define a sentence of FOL as a wff of FOL that contains no free variables.
The wff above is not a sentence. It is a mere wff.

7.7 Satisfaction

The sentence Pa is true just in case whatever object named by the constant ‘a’
has the property predicated by ‘P’. With quantifiers, things are different. For
example, we cannot say that that the sentence ∀x Px is true just in case x is a P.
Again, ‘x’ is not a constant but a variable; it doesn’t refer to any object. For the
same reason, we cannot say that ∀x Px is true just in case all x’s are P’s. There
is no objected named ‘x’.

In order to talk about the conditions under which quantified sentences are
true, we appeal to the concept of satisfaction. We say that a universal quantified
sentence of the form ∀x A is true just in case every object in the UD satisfies the
wff within the scope of ∀x. For example, the sentence ∀x Px is true just in case
every object in the UD satisfies Px. In turn, every object in the UD satisfies Px
just in case every object in the UD is a P.

ch. 7 introducing the quantifiers 99

Similarly, we say that an existentially quantified sentence of the form ∃x Px is
true just in case at least one object in the UD satisfies the wff within the scope
of ∃x. For example, the sentence ∃x Px is true just in case there is at least one
object in the UD that satisfies Px. And to say that at least one object in the UD
satisfies Px is just to say that at least one object in the UD is a P.

The truth conditions for quantified sentences can lead us to counterintuitive
results. For example, suppose we’re working with the following symbolization
key:

UD: Animals
Mx: x is a monkey
Sx: x knows sign language
Rx: x is a refrigerator

Now consider the following three sentences:

14. Every monkey knows sign language.
15. Some monkey knows sign language.
16. Every refrigerator knows sign language.

Their FOL translations are:

17. ∀x (Mx→ Sx)
18. ∃x (Mx ∧ Sx)
19. ∀x (Rx→ Sx)

One might think that 15 follows from 14. That is, it might be tempting to think
that if 14 is true, then 15 must be true. Furthermore, one might think that
sentence 16 is obviously false. But while both of these thoughts are intuitive,
they are mistaken. So, let us end this chapter by explaining why 15 does not
follow from 14, and why 16 is true in this context.

The first thing to note is that the predicate ‘R’ does not apply to anything in
the UD: no animal is a refrigerator. But that is not a problem. A predicate need
not apply to anything in the UD. A predicate that applies to nothing in the UD
is called an ‘empty predicate’.

Second, it is tempting to say that sentence 14 entails sentence 15; that is, if every
monkey knows sign language, then it must be that some monkey knows sign
language. This is a valid inference in Aristotelian logic: All Ms are S, .˙. Some
M is S. However, the entailment does not hold in FOL. It is possible for the
sentence ∀x (Mx → Sx) to be true even though the sentence ∃x (Mx ∧ Sx) is
false. How can this be?

100 forallx : SFU

We have defined ∀ and ∃ in such a way that ∀x¬A is equivalent to ¬∃x A . As
such, the universal quantifier doesn’t involve the existence of anything—only
non-existence. If sentence 18 were true, then there are no monkeys who don’t
know sign language. If there were no monkeys, then it would trivially follow
that there were no monkeys who don’t know sign language. So, if there were
no monkeys, then ∀x (Mx → Sx) would be true and ∃x (Mx ∧ Sx) would be
false.

Similar considerations explain why the sentence 19 is true in the context above.
The UD specified above is the set of animals. Since there is no refrigerator
in the UD, the predicate R is an empty predicate. The sentence ∀x (Rx → Sx)
can be interpreted to mean that there is no refrigerator that doesn’t know sign
language. But since there is no refrigerator in the UD, it trivially follows that
there is no refrigerator that doesn’t know sign language.

The notion of satisfaction helps make further sense of this. The sentence
∀x (Rx → Sx) states that every object in the domain satisfies (Rx → Sx). But
since (Rx→ Sx) is logically equivalent to (¬Rx∨Sx), the sentence ∀x (Rx→ Sx)
states that every object in the UD is either not a refrigerator or knows sign
language. Since the UD is the set of animals (and animals are not refrigera-
tors), it follows that every object in the UD satisfies (Rx → Sx). That is why
the sentence ∀x (Rx → Sx) is true. We can say of such sentences that they are
vacuously true.

Summary of logical notions

▷ The universal quantifier (∀) stands for ‘all’ and ‘every’.

▷ The existential quantifier (∃) stands for ‘some’, ‘at least one’, ‘there
exists at least one’.

▷ The scope of a quantifier is the subformula for which the quantifier is the
main logical operator.

▷ A term of FOL is either a constant or a variable.

▷ An atomic formula is any n-ary predicate followed by n terms.

▷ A bound variable is a variable that is within the scope of a quantifier.

▷ A free variable is a variable that is not bound.

▷ A sentence of FOL as a wff of FOL that contains no free variables.

ch. 7 introducing the quantifiers 101

Practice exercises

Part A Using the key given below, translate the numbered sentences.

UD: The people at a certain party
Mx: x is a mathematician
Px: x is a philosopher

Dxy: x admires y
s: Ashni
b: Ben

1. Ashni is a mathematician.
2. Ashni is a philosopher.
3. Ashni is either a mathematician or a philosopher.
4. Ashni admires Ben.
5. Ben admires Ashni.
6. Ashni and Ben admire each other.
7. Ashni is a mathematician and she admires Ben.
8. Ashni and Ben are mathematicians who admire each other.
9. Everyone is a mathematician. (i.e. Everyone at the party is a mathemati-

cian.)
10. Everyone is either a mathematician or a philosopher.
11. Everyone admires Ashni.
12. Ashni admires everyone.
13. Every mathematician admires Ashni.
14. Everyone who admires Ashni is either a mathematician or a philosopher.

Part B Devise your own key, and then translate the numbered sentences.

1. Jerry is a mouse.
2. Jerry is a mammal.
3. Jumbo is an elephant.
4. Jumbo is bigger than Jerry.
5. Every mouse is a mammal / Mice are mammals / A mouse is always a

mammal.
6. Mice and elephants are mammals.

102 forallx : SFU

Part C Which of the following inferences are valid?

1.

Everyone at the party is wearing red.

Everyone who is wearing red is cool.

.˙. Everyone at the party is cool.

2.

Nobody at the party is wearing red.

Nobody who is wearing red is cool.

.˙. Nobody at the party is cool.

3.

Everyone who likes Nickelback is cool.

.˙. Everyone who’s cool likes Nickelback.

4.

Everyone who likes Nickelback is cool.

.˙. Anyone who isn’t cool doesn’t like Nickelback.

5.

Nobody who likes Nickelback is cool.

.˙. Nobody who’s cool likes Nickelback.

Part D Using the key given below, fill in the gaps in the following table:

UD: The people at a certain party
Cx: x is chatting
Dx: x is dancing

Lxy: x loves y
a: Ashni
b: Ben

ch. 7 introducing the quantifiers 103

English Symbols

Someone loves Ashni. ∃x Lxa

Ben and someone love each other.

∃x
(
(Dx ∧ Cx) ∧ Lxb

)
(∃x Dx ∧ ∃y¬Dy)

If someone is chatting, then someone is dancing.

Either everyone is dancing, or someone is not dancing.

Part E Using the symbolization key given, translate each English-language
sentence into FOL.

UD: All animals
Ax: x is an alligator

Mx: x is a monkey
Rx: x is a reptile
Zx: x lives at the zoo

Lxy: x loves y
s: Amos
b: Bouncer
c: Cleo

1. Amos, Bouncer, and Cleo all live at the zoo.
2. Bouncer is a reptile, but not an alligator.
3. If Cleo loves Bouncer, then Bouncer is a monkey.
4. If both Bouncer and Cleo are alligators, then Amos loves them both.
5. Some reptile lives at the zoo.
6. Every alligator is a reptile.
7. Any animal that lives at the zoo is either a monkey or an alligator.
8. There are reptiles which are not alligators.
9. Cleo loves a reptile.

10. Bouncer loves all the monkeys that live at the zoo.
11. All the monkeys that Amos loves love him back.
12. If any animal is a reptile, then Amos is.

104 forallx : SFU

13. If any animal is an alligator, then it is a reptile.
14. Every monkey that Cleo loves is also loved by Amos.
15. There is a monkey that loves Bouncer, but sadly Bouncer does not recip-

rocate this love.

Part F These are syllogistic figures identified by Aristotle and his successors,
along with their medieval names. Translate each argument into FOL.

Baralipton All Bs are Cs. All As are Bs. .˙. Some C is A.

Barbara All Bs are Cs. All As are Bs. .˙. All As are Cs.

Baroco All Cs are Bs. Some A is not B. .˙. Some A is not C.

Bocardo Some B is not C. All As are Bs. .˙. Some A is not C.

Celantes No Bs are Cs. All As are Bs. .˙. No Cs are As.

Celarent No Bs are Cs. All As are Bs. .˙. No As are Cs.

Cemestres No Cs are Bs. No As are Bs. .˙. No As are Cs.

Cesare No Cs are Bs. All As are Bs. .˙. No As are Cs.

Dabitis All Bs are Cs. Some A is B. .˙. Some C is A.

Darii All Bs are Cs. Some A is B. .˙. Some A is C.

Datisi All Bs are Cs. Some B is A. .˙. Some C is A.

Disamis Some A is B. All As are Cs. .˙. Some B is C.

Ferison No Bs are Cs. Some B is A. .˙. Some A is not C.

Ferio No Bs are Cs. Some A is B. .˙. Some A is not C.

Festino No Cs are Bs. Some A is B. .˙. Some A is not C.

Frisesomorum Some B is C. No As are Bs. .˙. Some C is not A.

Part G Using the symbolization key given, translate each English-language
sentence into FOL.

UD: All animals
Dx: x is a dog
Sx: x likes samurai movies

Lxy: x is larger than y
b: Bertie
e: Emerson
f : Fergis

1. Bertie is a dog who likes samurai movies.

ch. 7 introducing the quantifiers 105

2. Bertie, Emerson, and Fergis are all dogs.
3. Emerson is larger than Bertie, and Fergis is larger than Emerson.
4. All dogs like samurai movies.
5. Only dogs like samurai movies.
6. There is a dog that is larger than Emerson.
7. If there is a dog larger than Fergis, then there is a dog larger than Emerson.
8. No animal that likes samurai movies is larger than Emerson.
9. No dog is larger than Fergis.

10. Any animal that dislikes samurai movies is larger than Bertie.
11. There is an animal that is between Bertie and Emerson in size.
12. There is no dog that is between Bertie and Emerson in size.
13. No dog is larger than itself.

Part H For each argument, write a symbolization key and translate the argu-
ment into FOL.

1. Nothing on my desk escapes my attention. There is a computer on my
desk. As such, there is a computer that does not escape my attention.

2. All my dreams are black and white. Old TV shows are in black and white.
Therefore, some of my dreams are old TV shows.

3. Neither Holmes nor Watson has been to Australia. A person could see a
kangaroo only if they had been to Australia or to a zoo. Although Watson
has not seen a kangaroo, Holmes has. Therefore, Holmes has been to a
zoo.

4. No one expects the Spanish Inquisition. No one knows the troubles I’ve
seen. Therefore, anyone who expects the Spanish Inquisition knows the
troubles I’ve seen.

5. All babies are illogical. Nobody who is illogical can manage a crocodile.
Berthold is a baby. Therefore, Berthold is unable to manage a crocodile.

Part I Using the symbolization key given, translate each English-language
sentence into FOL.

UD: Candies
Cx: x has chocolate in it

Mx: x has marzipan in it
Sx: x has sugar in it

Txy: x has tried y
Bxy: x is better than y

b: Boris

1. Boris has never tried any candy.
2. Marzipan is always made with sugar.
3. Some candy is sugar-free.
4. No candy is better than itself.
5. Boris has never tried sugar-free chocolate.

106 forallx : SFU

6. Boris has tried marzipan and chocolate, but never together.

Part J Using the symbolization key given, translate each English-language
sentence into FOL.

UD: People and dishes at a potluck
Rx: x has run out
Tx: x is on the table
Fx: x is food
Px: x is a person

Lxy: x likes y
e: Eli
f : Francesca
g: the guacamole

1. All the food is on the table.
2. If the guacamole has not run out, then it is on the table.
3. Everyone likes the guacamole.
4. If anyone likes the guacamole, then Eli does.
5. Francesca only likes the dishes that have run out.
6. Francesca likes no one, and no one likes Francesca.
7. Eli likes anyone who likes the guacamole.

Part K Using the symbolization key given, translate each English-language
sentence into FOL.

UD: People
Dx: x dances ballet
Fx: x is female

Mx: x is male
Cxy: x is a child of y
Sxy: x is a sibling of y

e: Elmer
j: Jane
p: Patrick

1. All of Patrick’s children are ballet dancers.
2. Jane is Patrick’s daughter.
3. Patrick has a daughter.
4. Jane is an only child.
5. All of Patrick’s daughters dance ballet.
6. Patrick has no sons.

Part L Identify which variables are bound and which are free.

1. (∃x Lxy ∧ ∀y Lyx)

ch. 7 introducing the quantifiers 107

2. (∀x Ax ∧ Bx)
3.
(
∀x (Ax ∧ Bx) ∧ ∀y (Cx ∧Dy)

)
4.
[
∀x∃y

(
Rxy→ (Jz ∧ Kx)

)
∨ Ryx

]
5.
(
∀x (My↔ Lyx) ∧ ∃y Lzy

)

Chapter 8

Proofs involving universal
quantifiers

In this chapter, we will discuss the natural deduction rules associated with the
universal quantifier. We will look at the rules for the existential quantifiers in
the next chapter. One rule will be easy; the other will be more difficult to apply.
Before we get to these rules, we will clarify some of the terminology involved.

It will help to have an example to work with. So throughout this chapter we
will assume the following symbolization key:

UD: The people at a certain party
Dx: x is dancing
Cx: x is chatting

Lxy: x loves y
a: Ashni
b: Ben

8.1 Terminology

Instances

Suppose you start with a universal generalization (that is a statement that starts
with ‘∀x’, or ‘∀y’, or the like). You then remove the initial quantifier and the
variable, and replace every occurrence of that variable in the statement with
a name or constant—the same name or constant each time. The result is an
instance (or a substitution instance) of the generalization. For example:

108

ch. 8 proofs involving universal quantifiers 109

A universal generalization and an instance

∀x Dx
(Everyone is dancing.)

Da
(Ashni is dancing.)

∀y (Dy ∧ Cy)
(Everyone is dancing and chatting.)

(Db ∧ Cb)
(Ben is dancing and chatting.)

∀z (Dz→ Cz)
(Everyone who is is dancing is
also chatting.)

(Da→ Ca)
(If Ashni is dancing she is
also chatting.)

To speak loosely, a universal generalization makes a claim about everything in
the universe of discourse (UD); an instance makes that claim about one specific
thing. I hope you find it obvious that from a universal generalization you can
validly infer any one of its instances: this in brief is the elimination rule for the
universal quantifier. More on this below.

In what follows, we will let ‘∀x Ax ’ stand for any arbitrary universal general-
ization, and ‘Ac’ for one of its instances.

Discharging assumptions

Recall that when a subproof ends, the assumption of that subproof (i.e., the
statement with which the subproof began) is said to be ‘discharged’. Consider
for example this proof:

1 (Pa→ a = b)

2 (a = b→ Rab)

3 Pa

4 a = b →E 3, 1

5 Rab →E 2, 4

6 (Pa→ Rab) →I 3–5

In this case, the assumption Pa is introduced at line 3, and then discharged
immediately after line 5. An assumption is said to be ‘undischarged’ if it has
been introduced and not yet discharged. This includes the initial premises
of the proof. So for example, at line 4 of the above proof, the undischarged
assumptions are (Pa→ a = b), (a = b→ Rab) and Pa. At line 6, the undischarged
assumptions are just (Pa→ a = b) and (a = b→ Rab).

110 forallx : SFU

8.2 Universal elimination

We first start with the easier rule for the universal quantifier: universal elimi-
nation. If you have ∀x Px, it is legitimate to infer that anything in the UD is a
P. You can infer Pa, Pb, Pu, Pc21, and so forth (assuming, of course, that a, b, u,
and c21 name things in the UD). You can infer any substitution instance.

This is the general form of the universal elimination rule (∀E):

j ∀x Ax

k Ac ∀E j

When using the ∀E rule, you write the substituted sentence with the constant
c replacing all occurrences of the variable x in A . For example:

1 ∀x (Dx→ Lxa)

2 (Db→ Lba) ∀E 1

3 (Da→ Laa) ∀E 1

8.3 Universal introduction

A universal claim like ∀x Px would be proven if every substitution instance of
it had been proven. That is, if every sentence Pa, Pb, . . . were available in a
proof, then you would certainly be entitled to claim ∀x Px. Alas, in most cases
there is no hope of proving every substitution instance.

Consider instead a simple proof:

1 ∀x (Cx→ Dx)

2 (Ce ∧ Lea)

3 Ce ∧E 2

4 (Ce→ De) ∀E 1

5 De →E 3, 4

6
(
(Ce ∧ Lea)→ De

)
→I 2–5

In this proof, we have proven
(
(Ce ∧ Lea) → De

)
. However, using the very

same method we could prove
(
(C f ∧ L f a) → D f

)
. Or we could have proven

ch. 8 proofs involving universal quantifiers 111(
(Cg∧Lga)→ Dg

)
. Indeed, we have a general method for proving any instance

of the universal generalization ∀x((Cx ∧ Lxa)→ Dx). But surely this is enough
to justify the universal generalization itself! If all instances of the universal
generalization can be proven, this means that all of them must be true (given
the truth of our premise), which means that the universal generalization itself
must be true (again, given the truth of our premise).

Thus, we can reason in the following way:

1 ∀x (Cx→ Dx)

2 (Ce ∧ Lea)

3 Ce ∧E 2

4 (Ce→ De) ∀E 1

5 De →E 3, 4

6
(
(Ce ∧ Lea)→ De

)
→I 2–5

7 ∀x
(
(Cx ∧ Lxa)→ Dx

)
∀I 6

Now, it is crucial to this proof that e was just some arbitrary constant: it stand for
any object in the UD. To make sure we’re dealing with an arbitrary constant, we
pick a constant that is not already in use in the proof. That way, we guarantee
that we are not making any special assumption about it.

To see this point, consider:

1 ∀x Lxa

2 Laa ∀E 1

3 ∀x Lxx ∀I 2

Obviously there must be something wrong with this proof, because ‘Everyone
loves themself’ cannot be validly inferred from ‘Everyone loves Ashni’. But
where is the error? The answer is that the final step in the proof is wrong.
Because the letter a appears in the argument’s premise, the ∀I rule cannot be
applied to it.

This is the schematic form of the universal introduction rule (∀I):

j Ac∗

k ∀x Ax ∀I j

∗ The constant c must not occur in any undischarged assumption.

112 forallx : SFU

Note that we can do this for any constant that does not occur in an undischarged
assumption and for any variable.

Note also that while the constant may not occur in any undischarged assumption,
it may occur as the assumption of a subproof that we have already closed. For
example, we can prove ∀z (Cz→ Cz) without any premise:

1 C f

2 C f R 1

3 (C f → C f) →I 1–2

4 ∀z (Cz→ Cz) ∀I 3

Summary of derivation rules in FOL covered in this
chapter

Universal Introduction (∀I)

j Ac∗

k ∀x Ax ∀I j

∗ The constant c must not occur in
any undischarged assumption.

Universal Elimination (∀E)

j ∀x Ax

k Ac ∀E j

ch. 8 proofs involving universal quantifiers 113

Practice exercises

Part A * Identify the mistake in each of the following “proofs”.

1.

1 ∀x (Mx→ Fx)

2 ∀x (Fx→ Px)

3 (Mx→ Fx) ∀E 1

4 (Fx→ Px) ∀E 1

5 Mx

6 Fx →E 3, 5

7 Px →E 4, 6

8 (Mx→ Px) →I 5–7

9 ∀x (Mx→ Px) ∀I 8

2.

1 (∀x Px→ Ga)

2 Pb

3 ∀x Px

4 (Pb→ Ga) ∀E 1

5 Ga →E 2, 4

*Many thanks to Kesavan Thanagopal for offering these exercises, originally created for his
PHIL110 Introduction to Logic and Reasoning tutorials.

114 forallx : SFU

3.

1 ∀x (Px ∧Qx)

2 Ra

3 (Pa ∧Qa) ∀E 1

4 Qa ∧E 3

5 ∀x Qx ∀I 4

Part B Provide natural deduction proofs for the following inferences:

1. ∀x (Cx→ Dx), Ca

.˙. Da

2. ∀x
(
(Cx ∧ Lxa)→ Dx

)
, Cb, Lba

.˙. Db

3. ∀x Cx, ∀x Dx

.˙. (Ca ∧Da)

Part C Provide natural deduction proofs for the following inferences:

1. ∀x (Cx ∧Dx)

.˙. ∀ xCx

2. ∀x (Cx→ Dx), ∀x Cx

.˙. ∀ xDx

3. ∀x (Cx→ Dx)

.˙. ∀x (¬Dx→ ¬Cx)

Part D Some of the following inferences are valid, some are not. For each,
either provide a formal proof in our formal system or construct an FO coun-
terexample. (challenging)

1. ∀x (Px ∨Qx)

.˙. (∀x Px ∨ ∀x Qx)

2. ∀x (Px ∧Qx)

.˙. (∀x Px ∧ ∀x Qx)

ch. 8 proofs involving universal quantifiers 115

3. (∀x Px ∨ ∀x Qx)

.˙. ∀x (Px ∨Qx)

4. (∀x Px ∧ ∀x Qx)

.˙. ∀x (Px ∧Qx)

Chapter 9

Proofs involving existential
quantifiers

In this chapter, we will discuss the natural deduction rules associated with the
existential quantifier. To keep things simple, we shall use the same symboliza-
tion key from the previous chapter:

UD: The people at a certain party
Dx: x is dancing
Cx: x is chatting

Lxy: x loves y
a: Ashni
b: Ben

As with universal generalizations, existential generalizations—i.e., statements
that start with ‘∃x’, or ’∃z’, or the like—have instances. To find an instance
of an existential generalization, you remove the initial quantifier and variable,
and replace every occurrence of that variable in the statement with a name or
constant—the same name or constant each time. For example:

An existential generalization and an instance

∃x Dx
(Someone is dancing.)

Da
(Ashni is dancing.)

∃y (Dy ∧ Cy)
(Someone is dancing and chatting.)

(Db ∧ Cb)
(Ben is dancing and chatting.)

∃z (Dz ∨ Cz)
(Someone is either dancing or
chatting.)

(Da ∨ Ca)
(Ashni is either dancing or
chatting.)

116

ch. 9 proofs involving existential quantifiers 117

In what follows, ‘∃x Ax ’ is an existential generalization and ‘Ac’ is an instance.

One rule for the existential quantifier is easy to apply; the other is more difficult.
We begin with the easier rule.

9.1 Existential introduction

It is legitimate to infer ∃x Px if you know that something is a P. It might be any
particular thing at all. For example, if you have Pa available in the proof, then
∃x Px follows.

This is the existential introduction rule (∃I):

j Ac

k ∃x Ax ∃I j

It is important to notice that the variable x does not need to replace all oc-
currences of the constant c. You can decide which occurrences to replace and
which to leave in place. For example:

1 Da→ Lad

2 ∃x (Da→ Lax) ∃I 1

3 ∃x (Dx→ Lxd) ∃I 1

4 ∃x (Dx→ Lad) ∃I 1

5 ∃y∃x (Dx→ Lyd) ∃I 4

6 ∃z∃y∃x (Dx→ Lyz) ∃I 5

Sentences on lines 5 and 6 are examples of what is called ‘multiple quantifica-
tion’: sentences that contain a series of two or more quantifiers in a row. We
will look at multiple quantification more closely in the next chapter. What is
important to note here is that the inferences made at lines 5 and 6 are valid.

9.2 Existential elimination

Recall that a sentence with an existential quantifier tells us that there is some
member of the UD that satisfy a formula. For example, ∃x Sx tells us (roughly)
that there is at least one S. It does not tell us which member of the UD satisfies S,
however. We cannot immediately conclude Sa, S f23, or any other substitution

118 forallx : SFU

instance of the sentence. What can we do?

Suppose that we knew both ∃x Sx and ∀x (Sx → Tx). We could reason in this
way:

Since ∃x Sx, there is something that is an S. We do not know which
constants refer to this thing, if any do, so call this thing ‘Ishmael’.
From ∀x (Sx → Tx), it follows that if Ishmael is an S, then it is a T.
Therefore, Ishmael is a T. Because Ishmael is a T, we know that
∃x Tx.

In this paragraph, we introduced a name for the thing that is an S. We gave
it an arbitrary name (‘Ishmael’) so that we could reason about it and derive
some consequences from there being an S. Since ‘Ishmael’ is just a bogus name
introduced for the purpose of the proof and not a genuine constant, we could
not mention it in the conclusion. Yet we could derive a sentence that does
not mention Ishmael; namely, ∃x Tx. This sentence does follow from the two
premises.

We want the existential elimination rule to work in a similar way. Yet, since
English language words like ‘Ishmael’ are not symbols of FOL, we cannot use
them in formal proofs. Instead, we will use constants of FOL which do not
otherwise appear in the proof.

A constant that is used to stand in for whatever it is that satisfies an existential
claim is called a ‘proxy’. Reasoning with the proxy must all occur inside a
subproof, and the proxy cannot be a constant that is doing work elsewhere in
the proof.

This is the schematic form of the existential elimination rule (∃E):

j ∃x Ax

k Ac∗

l B

m B ∃E j, k–l

∗ The constant c must not appear in ∃x Ax , in B , or in any undischarged
assumption.

Since the proxy constant is just a placeholder that we use inside the subproof,
it cannot be something about which we know anything particular. So, it
cannot appear in the original sentence∃x Ax or in an undischarged assumption.
Moreover, we do not learn anything about the proxy constant by using the ∃E
rule. So it cannot appear in B, the sentence you prove using ∃E.

With this rule, we can give a formal proof that ∃x Sx and ∀x (Sx→ Tx) together

ch. 9 proofs involving existential quantifiers 119

entail ∃x Tx.

1 ∃x Sx

2 ∀x (Sx→ Tx)

3 Si

4 (Si→ Ti) ∀E 2

5 Ti →E 3, 4

6 ∃x Tx ∃I 5

7 ∃x Tx ∃E 1, 3–6

Notice that this has effectively the same structure as the English-language ar-
gument with which we began, except that the subproof uses the proxy constant
‘i’ rather than the bogus name ‘Ishmael’.

9.3 Quantifier equivalences

Back in chapter 7, we said that ∀x ¬A and ¬∃x A are logically equivalent. We
also said that ∃x ¬A and ¬∀x A were logically equivalent. If two sentences
are logically equivalent, then we can derive one from the other, and vice versa.
We are now in position to prove these first-order equivalences. If we use the
wff Px as our A , then showing these equivalences would amount to proving
the following four inferences:

1. ∃x¬Px .˙. ¬∀x Px

2. ¬∀x Px .˙. ∃x¬Px

3. ∀x¬Px .˙. ¬∃x Px

4. ¬∃x Px .˙. ∀x¬Px

We are going to prove two of these inferences below (i.e., 1 and 3). The other
two will be left as exercises.

Let’s begin with 1. We have an existential claim as premise. This is a good
indication that we will need to use the ∃ E rule. Let’s see if we can use it to get
our conclusion. According to the rule, we could derive ¬∀x Px from ∃x¬Px
from the assumption that some proxy (say e) is the object that’s not a P:

120 forallx : SFU

1 ∃x¬Px

2 ¬Pe

. . .

? ¬∀x Px

¬∀x Px ∃E 1, 2–?

Now let’s focus on ¬∀x Px that’s within the subproof. It’s a negation, so we
can use ¬I to justify it:

1 ∃x¬Px

2 ¬Pe

3 ∀x Px

?? . . .

? ¬∀x Px ¬I 3–??

¬∀x Px ∃E 1, 2–?

Of course, in order to use the ¬I rule, we need to find some sentence and its
negation. That’s easy, since it follows from line 3 that Pe, which contradicts the
sentence at line 2. The finished proof looks like this:

1 ∃x¬Px

2 ¬Pe

3 ∀x Px

4 Pe ∀E 3

5 ¬Pe R 2

6 ¬∀x Px ¬I 3–5

7 ¬∀x Px ∃E 1, 2–6

Now let’s prove that¬∃x Px follows from∀x¬Px. Since we’re trying to establish
a negation, that is a good indication that our proof will take the form of a
reductio:

ch. 9 proofs involving existential quantifiers 121

1 ∀x¬Px

2 ∃x Px

? . . .

¬∃x Px ¬I 2–?

In order to properly use the¬I rule, we need to end the subproof with a sentence
and its negation. So, if we can get ¬∀x¬Px in our proof, that would be the
negation of line 1:

1 ∀x¬Px

2 ∃x Px

. . .

¬∀x¬Px

? ∀x¬Px R 1

¬∃x Px ¬I 2–?

Our next task is to establish ¬∀x¬Px. How can we do that? We can try using
∃E on line 2:

1 ∀x¬Px

2 ∃x Px

3 Pa

. . .

?? ¬∀x¬Px

¬∀x¬Px ∃E 2, 3–??

? ∀x¬Px R 1

¬∃x Px ¬I 2–?

Now we need to establish ¬∀x¬Px again. How do we do that? Again, we can
try using reductio:

122 forallx : SFU

1 ∀x¬Px

2 ∃x Px

3 Pa

4 ∀x¬Px

??? . . .

?? ¬∀x¬Px ¬I 4–???

¬∀x¬Px ∃E 2, 3–??

? ∀x¬Px R 1

¬∃x Px ¬I 2–?

We simply now need to get some sentence and its negation. We can do this
rather easily, and complete our proof:

1 ∀x¬Px

2 ∃x Px

3 Pa

4 ∀x¬Px

5 ¬Pa ∀E 4

6 Pa R 3

7 ¬∀x¬Px ¬I 4–6

8 ¬∀x¬Px ∃E 2, 3–7

9 ∀x¬Px R 1

10 ¬∃x Px ¬I 2–9

9.4 Soundness and completeness for FOL

We have now completed constructing our formal system of natural deduction in
FOL. Our system contains the introduction and elimination rules for the truth-
functional connectives, the quantifiers, and identity, as well as the reiteration
rule: 17 rules in all. At this point, we might ask ourselves two important
questions about our proof system. First, we might wonder whether our proof
system leaves anything out: are there first-order consequences that cannot be

ch. 9 proofs involving existential quantifiers 123

proven using our proof system? Second, we might wonder whether our proof
system makes any mistake. Surely, we can make mistakes using our proof
system. But are there things that can be proven in our system that are not
actually first-order consequences?

Our proof system warrants negative answers to both questions, which lead
us to two desirable properties of a system of natural deduction. The first
property is completeness (note that this is different from the notion of truth-
functional completeness discussed in chapter 4). Our first-order system of
natural deduction is able to prove every first-order consequence. It doesn’t
leave anything out. If we let ‘P1, . . ., Pn ⊢ S’ mean that a sentence S is provable
in FOL from premises P1–Pn, we can express the completeness theorem like
this:

Completeness Theorem: If S is a first-order consequence of P1, . . ., Pn, then P1, . . .,
Pn ⊢ S.

The second desirable property is soundness (note that this is different from the
notion of a sound argument). Our first-order proof system only proves first-
order consequences. That is, it doesn’t make mistakes. Of course, we might
make mistakes in using the rules, but if we do, the problem is with us, not with
our system. Again, if we let ‘P1, . . ., Pn ⊢ S’ mean that a sentence S is provable
in FOL from premises P1–Pn, we can express the soundness theorem like this:

Soundness Theorem: If P1, . . ., Pn ⊢ S, then S is a first-order consequence of P1,
. . ., Pn.

Taken together, the soundness and completeness theorems tell us that our proof
system proves all and only first-order consequences:

P1, . . ., Pn ⊢ S if and only if S is a first-order consequence of P1, . . ., Pn.

We do not have all of the technical resources to prove the completeness theorem
for FOL. But we can go some way to provide a sketch of a proof for the
soundness theorem.

To see how this might go—and to make our job a little easier—consider a subset
of our formal system, one that only contains the introduction and elimination
rules for the truth-functional connectives. Call that system “t”. There is a
corresponding completeness to t:

Soundness Theoremt: If P1, . . ., Pn ⊢t S, then S is tautological consequence of P1,
. . ., Pn.

Here, the subscript ‘t’ is to make it clear that we are talking about a subset of
our first-order proof system that includes only the introduction and elimination
rules for the truth-functional connectives. So, ‘P1, . . ., Pn ⊢t S’ means that S is
provable from sentences P1, . . ., Pn just using the rules for the truth-functional
connectives. And recall from chapter 3 that a sentence S is a tautological
consequence of sentences P1, . . ., Pn just in case there is no row in a joint truth

124 forallx : SFU

table that assigns a T to all of P1, . . ., Pn and an F to S.

The proof of the soundness of t takes the form of a reductio ad absurdum. First,
we assume for the sake of contradiction that t is unsound. So, we assume
that there is a proof p in t that makes a mistake and that allows us to derive a
sentence S from given premises, but where S is not a tautological consequence
of the premises. p might contain more than one mistake, but all we need to
consider is the first supposed invalid step in p. The next step in establishing the
soundness theorem for t involves showing that none of the 10 rules of t can be
responsible for this first invalid step. This can take a bit of time, since we need
to treat each rule separately, but the idea is that once we’ve done this, we will
have shown that t doesn’t make any mistake, thus establishing the soundness
theorem for t.

Let us end this chapter by looking at two examples: we will show that neither
∧I nor ¬E can be responsible for the first invalid step in p.

First, suppose that the first invalid step derives the sentence (P ∧ Q) from an
application of ∧I to P and Q . Let A1, . . ., Ak, P , and Q be the assumptions
in force at (P ∧ Q). Here, we are assuming that (P ∧ Q) is not a tautological
consequence of A1, . . ., Ak. Since the steps deriving P and Q are before the
first invalid step, P and Q must be tautological consequences of A1, . . ., Ak.
Now imagine constructing a joint truth table for A1, . . ., Ak, P , Q , and (P ∧Q).
Since we’re assuming that (P ∧Q) is not a tautological consequence of A1, . . .,
Ak, this means that there must be a row in the joint truth table that assigns a
T to all of A1, . . ., Ak and an F to (P ∧ Q). Call this row ‘h’. Since (P ∧ Q) is
false in h, so is P and so is Q . But now we’ve reached a contradiction: P and
Q must both be true in h, since we’re assuming that they are both tautological
consequences of A1, . . ., Ak. So, contrary to our initial assumption, ∧I cannot
be responsible for the first invalid step.

Next, suppose the first invalid step in p derives the sentence P from an appli-
cation of ¬E to an earlier subproof with assumption ¬P and that ends with Q
and ¬Q (a contradiction). Again, let A1, . . ., Ak be the assumptions in force at
step P . Note that the assumptions in force at step ¬Q are A1, . . ., Ak, ¬P , and
Q . The assumptions in force at step Q are A1, . . ., Ak and ¬P . Since the steps
deriving Q and ¬Q are earlier than our first invalid step, Q and ¬Q must be
tautological consequences of A1, . . ., Ak, and ¬P . However, the only way for Q
and ¬Q to both be tautological consequences of A1, . . ., Ak, and ¬P is for the
set of premises to be tautologically inconsistent: either A1, . . ., Ak or ¬P must
be false. Now, imagine constructing a joint truth table for A1, . . ., Ak, P , Q , ¬Q ,
and ¬P . Since we’re assuming that P is not a tautological consequence of A1,
. . ., Ak, this means that there must be a row in the joint truth table that assigns
a T to all of A1, . . ., Ak and an F to P . Call this row ‘h’. In h, A1, . . ., Ak and
¬P are true. But that contradicts our earlier result that either A1, . . ., Ak or ¬P
must be false. So, contrary to our initial assumption, ¬E cannot be responsible
for the first invalid step.

The full proof of the soundness of t requires showing that the other 8 rules

ch. 9 proofs involving existential quantifiers 125

cannot also be responsible for the first invalid step. Similarly, the full proof for
the soundness for FOL requires showing that none of the 17 rules is responsible
for the first invalid step. (Although here we would need to move away from
the notion of tautological consequence and frame the proof in terms of ‘first-order
consequence’, and part of what makes our task difficult is that we don’t have
a proper definition of a first-order consequence.)

9.5 Proving invalidity

There are times when working through a difficult proof where we get stuck and
are unsure how best to proceed. But given that our proof system is complete,
we know that if what we’re trying to derive is in fact a logical consequence of
the premises, then there exists a proof in our proof system that will show this.
We can rest assured that with more time and practice, we’ll be able to work our
way to a completed proof.

Other times, however, the reason why we might be struggling to complete a
‘proof’ is that the inference is in fact logically invalid. Given that our proof
system is sound, this means that there can be no such proof in our proof system.
Trying to work out such a ‘proof’ would be in vain.

How can we prove that an inference is logically invalid? What we do is con-
struct what is called a ‘first-order (FO) counterexample’. An FO counterexam-
ple consists in providing a symbolization key for the predicates and constants
used in the inference—except for the identity symbol, which always expresses
identity—and describing a circumstance in which the premises are true and
the conclusion is false.

For example, consider the following inference:

∀x (Px→ Qx),∀x (Qx→ Rx), ¬Pa .˙. ¬Ra

To show that this inference is invalid, consider first the following symbolization
key:

UD: Everything
Px: x is dog
Qx: x is a canine
Rx: x is a mammal

a: Smoky

Now, while it is true that all dogs are canines and that all canines are mammals,
suppose Smoky was my pet cat, and thus not a dog. In this case, all of the
premise would be true, but the conclusion would be false; after all, cats are
mammals too.

126 forallx : SFU

This constitutes an counterexample to the inference above, showing that it is
invalid. More generally, if an inference is invalid, it will always be possible to
conceive of an FO counterexample of this kind.

Summary of derivation rules in FOL covered in this
chapter

Existential Introduction (∃I)

j Ac

k ∃x Ax ∃I j

Existential Elimination (∃E)

j ∃x Ax

k Ac∗

l B

m B ∃E j, k–l

∗ The constant c must not appear
in ∃x Ax , in B , or in any undis-
charged assumption.

ch. 9 proofs involving existential quantifiers 127

Practice exercises

Part A * Identify the mistake in each of the following “proofs”.

1.

1 ∃x Px

2 ∃y Py R 1

2.

1 ∀x (Fx→ Gx)

2 ∃x Fx

3 Fk for existential instantiation

4 (Fk→ Gk) ∀E 1

5 Gk →E 3, 4

6 Gk ∃E 2, 3–5

7 ∃y Gy ∃I 6

3.

1 ∃x (Fa→ Sx)

2 Fa for conditional proof

3 (Fa→ Sa) for existential instantiation

4 Sa →E 2, 3

5 ∃y Sy ∃I 4

6 ∃y Sy ∃E 1, 3–5

7 (Fa→ ∃y Sy) →I 2–6

*Many thanks to Kesavan Thanagopal for offering these exercises, originally created for his
PHIL110 Introduction to Logic and Reasoning tutorials.

128 forallx : SFU

4.

1 ∀x (Rx ∨ Cx)

2 ∃x¬Rx

3 ¬Rk for existential instantiation

4 (Rk ∨ Ck) ∀E 1

5 Ck ∨E 3, 4

6 ∃x Cx ∃I 5

7 ∃x Cx ∃E 3–6

Part B The following inferences are valid. In each case, provide a natural
deduction proof:

1. Da, Ca

.˙. ∃x (Cx ∧Dx)

2. Da

.˙. ∃x (Dx ∨ Cx)

3. ∃x (Cx ∧Dx)

.˙. ∃x Cx

4. ∃x¬Cx, ∀x (Dx ∨ Cx)

.˙. ∃x Dx

Part C Exactly one of these inferences is valid. Give a natural deduction proof
for the valid inference, and explain why the other inference is not valid by
offering an FO counterexample:

1. ¬Da, (∃x Cx→ Da)

.˙. ∀x¬Cx

2. ∀x (Dx→ ¬Cx), ¬Ca

.˙. ¬Da

ch. 9 proofs involving existential quantifiers 129

Part D Provide proofs for the following two inferences:

1. ¬∀x Px .˙. ∃x¬Px

2. ¬∃x Px .˙. ∀x¬Px

Part E Some of the following inferences are valid, some are not. For each, either
provide a formal proof in our formal system or construct an FO counterexam-
ple. (challenging)

1. ∃x (Px ∨Qx)

.˙. (∃x Px ∨ ∃x Qx)

2. (∃x Px ∨ ∃x Qx)

.˙. ∃x (Px ∨Qx)

3. ∃x (Px ∧Qx)

.˙. (∃x Px ∧ ∃x Qx)

4. (∃x Px ∧ ∃x Qx)

.˙. ∃x (Px ∧Qx)

Part F Show that the rule→I is sound in t.

Chapter 10

Multiple quantifiers

So far, we’ve been working with quantified sentences that contain only one
quantifier. In this chapter, we look at how to translate quantified sentences that
require more than one quantifier, and we look at proofs that contain quantified
sentences with multiple quantifiers.

10.1 The four Aristotelian forms

Before we get into the business of translating sentences, it will be helpful to
look at the four main sentence forms treated in Aristotle’s logic.

1. All P ’s are Q ’s.
2. Some P ’s are Q ’s.
3. No P ’s are Q ’s.
4. Some P ’s are not Q ’s.

We saw in previous chapters ways in which we can translate these sentence
forms in FOL. In the next two chapters, it will be useful to remind ourselves of
their FOL translations:

1∗. ∀x (P x→ Q x)
2∗. ∃x (P x ∧ Q x)
3∗. ∀x (P x→ ¬Q x) (or alternatively ¬∃x (P x ∧ Q x))
4∗. ∃x (P x ∧ ¬Q x)

This will be useful since the majority of quantified English sentences that we
will look at in the next two chapters can easily be seen as belonging to one
of these four Aristotelian forms. Once we’ve identified the form, translating
sentences into FOL will simply be a matter of fleshing out the details.

130

ch. 10 multiple quantifiers 131

10.2 Multiple uses of a single quantifier

We’ll first focus on quantified sentences with multiple uses of a single quan-
tifier—i.e., multiple uses of ∃ and multiple uses of ∀. We’ll then consider
sentences that use mixed quantifiers.

Consider the following symbolization key and the sentences that follow it:

UD: Chess pieces on a chess board
Hx: x is a bishop
Kx: x is a knight
Lx: x is black
Px: x is a pawn
Rx: x is a rook

Wx: x is white
Bxy: x is in back of y
Fxy: x is in front of y
Sxy: x is in the same row as y

5. All pawns are in front of every rook.
6. A bishop is in back of a knight.
7. No black pawn is in front of any knight.
8. Some black piece is not in front of some white piece.
9. Every bishop is in a different row from every other bishop.

Sentence 5 clearly takes the form ‘All P ’s are Q ’s’. So, our translation will be
of the form ∀x (. . . → . . .). We simply need to figure out our P ’s and Q ’s. In
this case, P is simply Px : ∀x (Px→ . . .). What is our Q ? It is being in front of
every rook. So, we need a way to express that: ∀y (Ry → Fxy). Put those two
bits together, and you’ve got a correct translation of 5:

5∗. ∀x
(
Px→ ∀y (Ry→ Fxy)

)
Sentence 6 takes the form ‘Some P ’s are Q ’s’. So, our translation will take the
form ∃x (. . .∧ . . .). Again, we simply need to figure out our P ’s and Q ’s; in this
case, our P is simply Hx: ∃x (Hx ∧ . . .). What is our Q ? It is being in back of a
knight. We can express this using: ∃y(Ky∧Bxy). Putting those things together
we get:

6∗. ∃x
(
Hx ∧ ∃y (Ky ∧ Bxy)

)
Sentence 7 is a bit trickier, but the same kind of procedure should yield a
correct translation. First, we notice that sentence 7 is of the form ‘No P ’s are

132 forallx : SFU

Q ’s.’ Second, we notice that our P is something complex: being a black pawn.
So, sentence 6 can be partially translated as ∀x

(
(Lx ∧ Px) → . . .). Our Q is

not being in front of any knight: ∀y (Ky → ¬Fxy). We can now finish the
translation:

7∗. ∀x
(
(Lx ∧ Px)→ ∀y (Ky→ ¬Fxy)

)
Alternatively, we could have translated 7 as ¬∃x

(
(Lx∧Px)∧∃y (Ky∧ Fxy)

)
. A

correct translation for 8 is:

8∗. ∃x
(
Lx ∧ ¬∃y (Wy ∧ Fxy)

)
It might be tempting to translate sentence 9 as ∀x

(
Hx→ ∀y (Hy→ ¬Sxy)

)
. But

this would be a mistake. ∀x
(
Hx → ∀y (Hy → ¬Sxy)

)
states that every bishop

is in a different row from every bishop. But this sentence would be false even
if there are only two bishops in two different rows, since each bishop would
obviously be in the same row as itself. In order to express the claim that each
bishop is in a different row from every other bishop, we will need to make it
clear that we are talking about different bishops. In order to do that, we will
need the inequality symbol. We can translate sentence 9 with this:

9∗. ∀x
[
Hx→ ∀y

(
(Hy ∧ y , x)→ ¬Syx

)]

10.3 Mixed quantifiers

We now move on to consider sentences that mix universal and existential quan-
tifiers together. Consider the following symbolization key and the sentences
that follow it:

UD: People and dogs
Dx: x is a dog

Fxy: x is a friend of y
Oxy: x owns y

f : Fifi
g: Gerald

10. Fifi is a dog.
11. Gerard is a dog owner.
12. Someone is a dog owner.
13. All of Gerald’s friends are dog owners.

ch. 10 multiple quantifiers 133

14. Every dog owner is the friend of a dog owner.

Sentence 10 is easy: D f . Sentence 11 can be paraphrased as ‘There is a dog that
Gerald owns’. This has the form of ‘Some P’s are Q’s’. This can be translated
as ∃x (Dx ∧Ogx).

Like sentence 11, sentence 12 takes the form ‘Some P’s are Q’s’. It can be
paraphrased as ‘Some dog is owned by someone’. So, we can translate it as
∃x (Dx ∧ ∃y Oyx).

Sentence 13 can be paraphrased as ‘Every friend of Gerald is a dog owner’.
It clearly is of the form ‘All P’s are Q’s’. Translating the first part of this
sentence, we get ∀x (Fxg → ‘x is a dog owner’). Again, it is important to
recognize that ‘x is a dog owner’ is structurally just like sentence 11. Since we
already used the variable ‘x’, we will need a different variable for the existential
quantifier. Any other variable will do. Using ‘z’, sentence 13 can be translated
as ∀x

(
Fxg→ ∃z (Dz ∧Oxz)

)
.

Sentence 14 can be paraphrased as ‘For any x that is a dog owner, there is a dog
owner who is x’s friend.’ Partially translated, this becomes:

∀x
(
x is a dog owner → ∃y (y is a dog owner ∧ Fxy)

)
Completing the translation, sentence 14 becomes:

∀x
(
∃z (Dz ∧Oxz)→ ∃y (∃z (Dz ∧Oyz) ∧ Fxy)

)
When symbolizing sentences with multiple quantifiers, it is best to proceed by
small steps, recognizing their Aristotelian forms. Paraphrase the English sen-
tence so that the logical structure is readily symbolized in FOL. Then translate
piecemeal, replacing the dauting task of translating a long sentence with the
simple task of translating shorter formulas.

10.4 Order of quantifiers and variables

When dealing with multiple instances of a single quantifier, the order of the
quantifiers didn’t matter. If we let Lxy mean ‘x likes y’, obviously ∀x∀y Lxy
and ∀y∀x Lxy are logically equivalent: they both state that everybody likes
everybody. This same is true about the order of variables. ∀x∀y Lxy is logically
equivalent to ∀x∀y Lyx. Again, both mean that everybody likes everybody.

But this is not the case when we’re dealing with mixed quantifiers. Both the
order of variables and the order of quantifiers matter a great deal. To see this,
consider the following four sentences:

134 forallx : SFU

15. ∀x∃y Lxy
16. ∃y∀x Lxy
17. ∀x∃y Lyx
18. ∃y∀x Lyx

Assuming we are working with people as our UD, sentence 15 states that
everyone likes someone. Sentence 16, on the other hand, states that there is
some popular person that everyone likes. Statement 17 states that everyone is
liked by someone, whereas sentence 18 states that someone likes everyone.

So, when we’re dealing with mixed quantifiers, we must pay close attention to
both the order of the variables, as well as the order of the quantifiers.

10.5 Proofs using multiple quantifiers

Doing proofs with multiple quantifiers is not really any different from doing
proofs with sentences that contain only one quantifier. They might appear to
be trickier, but if we apply our rules correctly, we shouldn’t have any issue.
Let’s take a look at a couple of examples before we end this chapter.

Our FOL translation of sentence 5 above was ∀x
(
Px→ ∀y (Ry→ Fxy)

)
. There

is another way to translate this sentence such that all quantifiers appear at the
beginning of the sentence: ∀x∀y

(
(Px ∧ Ry) → Fxy

)
. It is said of the latter

sentence that it is in prenex form, but it is logically equivalent to the former
translation. Since they are logically equivalent, we can derive one from the
other, and vice versa. Here, let’s show that ∀x∀y

(
(Px ∧ Ry) → Fxy

)
follows

from ∀x
(
Px→ ∀y (Ry→ Fxy)

)
.

1 ∀x
(
Px→ ∀y (Ry→ Fxy)

)
. . .

∀x∀y
(
(Px ∧ Ry)→ Fxy

)
The first thing to note is that our conclusion is a universal claim. So, let’s try
justifying it using an application of ∀I:

1 ∀x
(
Px→ ∀y (Ry→ Fxy)

)
. . .

? ∀y
(
(Pa ∧ Ry)→ Fay

)
∀x∀y

(
(Px ∧ Ry)→ Fxy

)
∀I ?

ch. 10 multiple quantifiers 135

Working backwards, we have another universal claim to justify. So, Let’s use
another application of ∀ I:

1 ∀x
(
Px→ ∀y (Ry→ Fxy)

)
. . .

??
(
(Pa ∧ Rb)→ Fab

)
? ∀y

(
(Pa ∧ Ry)→ Fay

)
∀I ??

∀x∀y
(
(Px ∧ Ry)→ Fxy

)
∀I ?

Again, working backwards, we now have a conditional claim to justify. So, we
can try using→I:

1 ∀x
(
Px→ ∀y (Ry→ Fxy)

)
2 (Pa ∧ Rb)

. . .

??? Fab

??
(
(Pa ∧ Rb)→ Fab

)
→I 2–???

? ∀y
(
(Pa ∧ Ry)→ Fay

)
∀I ??

∀x∀y
(
(Px ∧ Ry)→ Fxy

)
∀I ?

At this point, notice that our premise is a universal claim. So, we can try using
∀ E on it:

1 ∀x
(
Px→ ∀y (Ry→ Fxy)

)
2 (Pa ∧ Rb)

3
(
Pa→ ∀y (Ry→ Fay)

)
∀E 1

. . .

??? Fab

??
(
(Pa ∧ Rb)→ Fab

)
→I 2–???

? ∀y
(
(Pa ∧ Ry)→ Fay

)
∀I ??

∀x∀y
(
(Px ∧ Ry)→ Fxy

)
∀I ?

Here, we can easily detach the consequent of the conditional on 3 using modus
ponens:

136 forallx : SFU

1 ∀x
(
Px→ ∀y (Ry→ Fxy)

)
2 (Pa ∧ Rb)

3
(
Pa→ ∀y (Ry→ Fay)

)
∀E 1

4 Pa ∧E 2

5 ∀y (Ry→ Fay) →E 3, 4

. . .

??? Fab

??
(
(Pa ∧ Rb)→ Fab

)
→I 2–???

? ∀y
(
(Pa ∧ Ry)→ Fay

)
∀I ??

∀x∀y
(
(Px ∧ Ry)→ Fxy

)
∀I ?

Now notice that we have another universal claim at line 5. So, we can apply
another instance of ∀ E on it to get (Rb → Fab), at which point we can use
another instance of modus ponens to complete our proof:

1 ∀x
(
Px→ ∀y (Ry→ Fxy)

)
2 (Pa ∧ Rb)

3
(
Pa→ ∀y (Ry→ Fay)

)
∀E 1

4 Pa ∧E 2

5 ∀y (Ry→ Fay) →E 3, 4

6 (Rb→ Fab) ∀E 5

7 Rb ∧E 2

8 Fab →E 6, 7

9
(
(Pa ∧ Rb)→ Fab

)
→I 2–8

10 ∀y
(
(Pa ∧ Ry)→ Fay

)
∀I 9

11 ∀x∀y
(
(Px ∧ Ry)→ Fxy

)
∀I 10

Let’s take a look at a final proof. Suppose our UD consists in children in a
kindergarten class. And suppose further that there is a girl that every boy
likes. Surely, it follows from this that every boy likes some girl. In order to
prove this, we first need to translate our premise and conclusion:

ch. 10 multiple quantifiers 137

1 ∃x
(
Gx ∧ ∀y (By→ Lyx)

)
. . .

∀x
(
Bx→ ∃y (Gy ∧ Lxy)

)
Since the conclusion is a universal claim, we know that we could justify it using
an application of ∀ I:

1 ∃x
(
Gx ∧ ∀y (By→ Lyx)

)
. . .

?
(
Ba→ ∃y (Gy ∧ Lay)

)
∀x
(
Bx→ ∃y (Gy ∧ Lxy)

)
∀I ?

Now we’re tasked with proving a conditional. This we can do using an appli-
cation of→I:

1 ∃x
(
Gx ∧ ∀y (By→ Lyx)

)
2 Ba

. . .

?? ∃y (Gy ∧ Lay)

?
(
Ba→ ∃y (Gy ∧ Lay)

)
→I 2–??

∀x
(
Bx→ ∃y (Gy ∧ Lxy)

)
∀I ?

Working backwards, we now need to establish an existential claim. We can try
to justify it using an application of ∃ E on line 1:

1 ∃x
(
Gx ∧ ∀y (By→ Lyx)

)
2 Ba

3
(
Gb ∧ ∀y (By→ Lyb)

)
. . .

??? ∃y (Gy ∧ Lay)

?? ∃y (Gy ∧ Lay) ∃E 1, 3–???

?
(
Ba→ ∃y (Gy ∧ Lay)

)
→I 2–??

∀x
(
Bx→ ∃y (Gy ∧ Lxy)

)
∀I ?

138 forallx : SFU

At this point, we can eliminate both conjuncts at line 3, and use ∀E on the
second conjunct:

1 ∃x
(
Gx ∧ ∀y (By→ Lyx)

)
2 Ba

3
(
Gb ∧ ∀y (By→ Lyb)

)
4 Gb ∧E 3

5 ∀y (By→ Lyb) ∧E 3

6 (Ba→ Lab) ∀E 5

. . .

??? ∃y (Gy ∧ Lay)

?? ∃y (Gy ∧ Lay) ∃E 1, 3–???

?
(
Ba→ ∃y (Gy ∧ Lay)

)
→I 2–??

∀x
(
Bx→ ∃y (Gy ∧ Lxy)

)
∀I ?

But now, we’re almost done the proof. We can use Bab via modus ponens and
use ∧I to get (Gb ∧ Lab). Finally, we can use an application of ∃I to get our
existential claim needed to complete the proof:

1 ∃x
(
Gx ∧ ∀y (By→ Lyx)

)
2 Ba

3
(
Gb ∧ ∀y (By→ Lyb)

)
4 Gb ∧E 3

5 ∀y (By→ Lyb) ∧E 3

6 (Ba→ Lab) ∀E 5

7 Lab →E 2, 6

8 (Gb ∧ Lab) ∧I 4, 7

9 ∃y (Gy ∧ Lay) ∃I 8

10 ∃y (Gy ∧ Lay) ∃E 1, 3–9

11
(
Ba→ ∃y (Gy ∧ Lay)

)
→I 2–10

12 ∀x
(
Bx→ ∃y (Gy ∧ Lxy)

)
∀I 11

ch. 10 multiple quantifiers 139

Practice exercises

Part A Translate the following English sentences into FOL using this symbol-
ization key: (Hint: for some of these, you will need the inequality symbol.)

UD: Chess pieces on a chess board
Bx: x is black
Kx: x is a knight
Px: x is a pawn
Rx: x is a rook

Wx: x is white
Fxy: x is in front of y
Cxy: x is in the same column as y
Lxy: x is left of y
Oxy: x is in the same row as y

1. All of the black pieces are in front of all the white pieces.
2. Some rook is to the left of a knight.
3. All white pawns are in the same column.
4. Not all black pawns are in the same column.
5. Every rook is in a different row than every other rook. (Hint: you will

need to use the inequality symbol to express this.)
6. Every pawn is in a different column than every other pawn.
7. Different knights are in the same column.
8. There are no different rooks in the same row.

Part B Using the symbolization key from part A, translate the following FOL
sentences into English.

1. ∀x
(
Px→ ∃y (Ry ∧ Lxy)

)
2. ∃x

(
Px ∧ ∀y ((Wy ∧ Ry)→ ¬Cxy)

)
3. ∀x

(
(Bx ∧ Kx)→ ¬∃z (Wz ∧ (Pz ∧ Fzx))

)
4. ∃x

(
Rx ∧ ¬∀y (Py→ Oxy)

)
5. ∃x

(
Rx ∧ ∃y (Ry ∧ x , y)

)
6. ∃x∃y x , y
7. ∃x∃y Cxy→ ∀x∀y Oxy
8. ∀x∀y

(
((Rx ∧ Py) ∧ Fxy)→ ∃z (Kz ∧ Cxz)

)

140 forallx : SFU

Part C Using the following symbolization key, translate the following FOL
sentences into English.

UD: Animals
Bx: x is brown
Dx: x is a dog
Fx: x is a frog
Gx: x is green
Mx: x is a mouse
Sxy: x is smaller than y
Ixy: x is bigger than y

m: Mighty Mouse

1. Every green frog is smaller than a brown dog.
2. Some frog is bigger than every mouse.
3. Nothing is bigger than everything.
4. Every frog bigger than every mouse is green.
5. Nothing smaller than a frog is bigger than a dog.
6. Some dog is smaller than some mouse.
7. No mouse is bigger than every dog.
8. Mighty Mouse is bigger than any other mouse.

Part D Provide formal proofs for the following valid inferences.

1. ∃y∀x Lyx

.˙. ∀x∃y Lyx

2. ∃x (Dx ∧ ∃y Rxy), ∀x (∃y Rxy→ Cx)

.˙. ∃x Cx

3. ∀x
(
Px→ ∃y (Ry ∧ Lxy)

)
, ∃x Px

.˙. ∃x Rx

4. ∀x
(
Px→ ∀y (Qy→ Ryx)

)
, ∀x∀y (Rxy→ Txy)

.˙. ∀x
(
Px→ ∀y (Qy→ Tyx)

)
5. ∃x

(
Dx ∧ ¬∀y (Cy→ Bxy)

)
.˙. ¬∀x

(
Dx→ ∀y (Cy→ Bxy)

)

Chapter 11

Numerical quantification

In this final chapter, we look at how to express numerical statements in FOL,
sentences that explicitly reference the numbers 1, 2, 3, and so on. We end by
looking at some proofs that have numerical sentences as premises or conclu-
sions.

11.1 Numerical statements

We’ve seen in previous chapters that we can express universal and existential
statements in FOL using ∀ and ∃ respectively. One good thing about having
a first-order language that contains identity (i.e., =) is that it allows us to say
how many things there are of a particular thing. For example, consider these
sentences:

1. There is at least one apple on the table.
2. There are at least two apples on the table.
3. There are at least three apples on the table.

Now, consider the following symbolization key:

UD: Everything
Ax: x is an apple
Tx: x is on the table

Sentence 1 doesn’t require identity. It can be translated as ∃x (Ax ∧ Tx): There
is some apple on the table—perhaps many, but at least one. It might be
tempting to translate sentence 2 without identity. Yet consider the sentence
∃x∃y [(Ax ∧ Tx) ∧ (Ay ∧ Ty)]. It means that there is some apple x that is on

141

142 forallx : SFU

the table and some apple y that is on the table. Since nothing precludes x and
y from picking out the same member of the UD, this would be true even if
there were only one apple on the table. In order to make sure that there are
two different apples, we need the identity predicate. Sentence 2 needs to say
that the two apples on the table are not identical. So, it can be translated as
∃x∃y [(Ax ∧ Tx) ∧ (Ay ∧ Ty) ∧ x , y].

Sentence 3 requires talking about three different apples on the table. It can be
translated as ∃x∃y∃z [(Ax∧Tx)∧ (Ay∧Ty)∧ (Az∧Tz)∧ x , y∧ y , z∧ x , z].
(We’ve omitted some brackets in this statement, and some others in this chapter,
for clarity.)

Continuing this way, we can translate ‘There are at least four apples on the
table’, ‘There are at least five apples on the table’, and so on.

Now consider these sentences:

4. There is at most one apple on the table.
5. There are at most two apples on the table.

Sentence 4 can be paraphrased as ‘It is not the case that there are at least two
apples on the table’. This is just the negation of sentence 2:

¬∃x∃y [(Ax ∧ Tx) ∧ (Ay ∧ Ty) ∧ x , y].

Sentence 4 can also be approached in another way. It means that any apples
that there are on the table must be the selfsame apple, so it can be translated
as ∀x∀y

[(
(Ax ∧ Tx) ∧ (Ay ∧ Ty)

)
→ x = y

]
. The two translations are logically

equivalent, so both are correct.

In a similar way, sentence 5 can be translated in two equivalent ways. It can be
paraphrased as ‘It is not the case that there are three or more distinct apples on
the table’, so it can be translated as the negation of sentence 3. Using universal
quantifiers, it can also be translated as

∀x∀y∀z
[(

(Ax ∧ Tx) ∧ (Ay ∧ Ty) ∧ (Az ∧ Tz)
)
→ (x = y ∨ y = z ∨ x = z)

]
.

We can also translate statements of equality which say exactly how many things
there are. For example:

6. There is exactly one apple on the table.
7. There are exactly two apples on the table.

Sentence 7 can be paraphrased as ‘There are at least two apples on the table,
and there are at most two apples on the table’. This is just the conjunction of

ch. 11 numerical quantification 143

sentences 2 and 5:

∃x∃y [(Ax ∧ Tx) ∧ (Ay ∧ Ty) ∧ x , y]
∧

∀x∀y∀z
[(

(Ax ∧ Tx) ∧ (Ay ∧ Ty) ∧ (Az ∧ Tz)
)
→ (x = y ∨ y = z ∨ x = z)

]
.

Admittedly, this translation is rather clunky and difficult to read. Luckily, we
can approach sentence 7 in another way. To say that there are exactly two
apples on the table is to say that there are at least two apples on the table, and
any apple on the table is one of those apples. So, we can translate sentence 7
in the following way:

∃x∃y
[(

(Ax ∧ Tx) ∧ (Ay ∧ Ty) ∧ x , y
)
∧ ∀z

(
(Az ∧ Tz)→ (z = x ∨ z = y)

)]
.

Similarly, sentence 6 can be paraphrased as ‘There is at least one apple on the
table, and any apple on the table is that apple’. So, we can translate sentence 6
in the following way:

∃x
[
(Ax ∧ Tx) ∧ ∀y

(
(Ay ∧ Ty)→ y = x

)]
.

11.2 Definite descriptions

In his article ‘On Denoting’ in 1905, Bertrand Russell asked how we should
understand this sentence:

8. The present king of France is bald.

The phrase ‘the present king of France’ is supposed to pick out an individual
by means of a definite description. However, there was no king of France in
1905 and there is none now. Since the description is a non-referring term, we
cannot just define a constant (e.g., ‘k’) to mean ‘the present king of France’, take
‘Bx’ to mean ‘x is bald’, and translate the sentence as Bk.

Russell’s idea was that sentences that contain definite descriptions have a dif-
ferent logical structure than sentences that contain proper names, even though
they are superficially similar. What do we mean when we use an unproblem-
atic, referring description like ‘the highest peak in Washington state’? We mean
that there is such a peak because we could not talk about it otherwise. We also
mean that it is the only such peak. If there were another peak in Washington
state of exactly the same height as Mount Rainier, then Mount Rainier would
not be the highest peak.

According to this analysis, sentence 8 is saying three things. First, it makes
an existence claim: There is some present king of France. Second, it makes a

144 forallx : SFU

uniqueness claim: This guy is the only present king of France. Third, it makes
a claim of predication: This guy is bald.

In order to symbolize definite descriptions in this way, we need the identity
predicate. Without it, we could not translate the uniqueness claim which
(according to Russell) is implicit in the definite description.

Let the UD be people actually living, let Fx mean ‘x is the present king of
France’, and let Bx mean ‘x is bald’. Sentence 8 can be translated as:

∃x
[
Fx ∧ ¬∃y (Fy ∧ x , y) ∧ Bx

]
.

This says that there is some guy who is the present king of France, he is the
only present kind of France, and he is bald.

Another way to translate sentence 8 gets its cue from the way we translated
sentence 6. Sentence 8 can be paraphrased as ‘There is at least one present king
of France, and any present king of France is that guy, and that guy is bald’:

∃x
[
Fx ∧ ∀y (Fy→ y = x) ∧ Bx

]
.

Understood in these ways, sentence 8 is meaningful but false. It say that this
guy exists, but he does not.

The problem of non-referring terms is most vexing when we try to translate
negations. So, consider this sentence:

9. The present king of France is not bald.

According to Russell, this sentence is ambiguous in English. It could mean
either of two things:

9a. It is not the case that the present king of France is bald.
9b. The present king of France is non-bald.

Or in symbols:

9a. ¬∃x
[
Fx ∧ ∀y (Fy→ y = x) ∧ Bx

]
9b. ∃x

[
Fx ∧ ∀y (Fy→ y = x) ∧ ¬Bx

]
Both possible translations add a negation to sentence 8, but they put the nega-
tion in different places. Sentence 9a is true; sentence 9b is false.

For a more detailed discussion of Russell’s theory of definite descriptions,
including objections to it, see Peter Ludlow’s entry ‘descriptions’ in The Stan-
ford Encyclopedia of Philosophy: Summer 2005, edited by Edward N. Zalta,
http://plato.stanford.edu/archives/sum2005/entries/descriptions/.

http://plato.stanford.edu/archives/sum2005/entries/descriptions/

ch. 11 numerical quantification 145

11.3 Formal proofs using numerical quantification

As with proofs using multiple quantifiers, proofs using numerical quantifica-
tion can be rather long and tricky. But if we use our rules correctly, we should
have no problem.

Consider again sentence 4 above. To make our task more manageable, let us
limit the UD to be things on the table. The following translations of sentence 4
are logically equivalent:

4a. ¬∃x∃y [Ax ∧ Ay ∧ x , y]
4b. ∀x∀y

[
(Ax ∧ Ay)→ x = y

]
This means that we can derive 4a from 4b and vice versa. Let’s show that we
can derive 4b from 4a:

1 ¬∃x∃y [Ax ∧ Ay ∧ x , y]

. . .

∀x∀y
[
(Ax ∧ Ay)→ x = y

]
The first thing to note is that we can get our conclusion using two applications
of ∀I:

1 ¬∃x∃y [Ax ∧ Ay ∧ x , y]

. . .

??
[
(Ab ∧ Ac)→ b = c

]
? ∀y

[
(Ab ∧ Ay)→ b = y

]
∀I ??

∀x∀y
[
(Ax ∧ Ay)→ x = y

]
∀I ?

146 forallx : SFU

Our next task is to establish a conditional claim using→I:

1 ¬∃x∃y [Ax ∧ Ay ∧ x , y]

2 (Ab ∧ Ac)

. . .

??? b = c

??
[
(Ab ∧ Ac)→ b = c

]
→I 2–???

? ∀y
[
(Ab ∧ Ay)→ b = y

]
∀I ??

∀x∀y
[
(Ax ∧ Ay)→ x = y

]
∀I ?

We now need to establish b = c. We can do this via reductio using ¬E:

1 ¬∃x∃y [Ax ∧ Ay ∧ x , y]

2 (Ab ∧ Ac)

3 b , c

. . .

????

??? b = c ¬E 3–????

??
[
(Ab ∧ Ac)→ b = c

]
→I 2–???

? ∀y
[
(Ab ∧ Ay)→ b = y

]
∀I ??

∀x∀y
[
(Ax ∧ Ay)→ x = y

]
∀I ?

ch. 11 numerical quantification 147

Now, in order to properly use the ¬E rule, we need to end our subproof with
a contradiction—i.e., a sentence and its negation. But we can see that lines 2
and 3 state that a and b are two different apples on the table, which contradicts
our premise. So, with an application of ∧I, and two applications of ∃I, we can
finish our proof:

1 ¬∃x∃y [Ax ∧ Ay ∧ x , y]

2 (Ab ∧ Ac)

3 b , c

4
(
Ab ∧ Ac ∧ b , c

)
∧I 2, 3

5 ∃y
(
Ab ∧ Ay ∧ b , y

)
∃I 4

6 ∃x∃y
(
Ax ∧ Ay ∧ x , y

)
∃I 5

7 ¬∃x∃y
(
Ax ∧ Ay ∧ x , y

)
R 1

8 b = c ¬I 3–7

9
[
(Ab ∧ Ac)→ b = c

]
→I 2–8

10 ∀y
[
(Ab ∧ Ay)→ b = y

]
∀I 9

11 ∀x∀y
[
(Ax ∧ Ay)→ x = y

]
∀I 10

In order to prove that 4a and 4b are logically equivalent, we would now need
to show that we can also derive 4a from 4b. This proof is a bit tricker, requiring
various nested subproofs. We will leave it as a practice exercise (see Practice
Exercises PART C, exercise d below).

Let’s take a look at a final proof, where we show that there exists at least two
Ps logically entails that it is not the case that there is at most one P.

1 ∃x∃y [Px ∧ Py ∧ x , y]

. . .

¬∀x∀y
[
(Px ∧ Py)→ x = y

]
Since our conclusion is a negation, we could justify it via reductio. But since
we’ve got an existential statement as a premise, we could try to justify our
conclusion using an application of ∃E. Let’s do that:

148 forallx : SFU

1 ∃x∃y [Px ∧ Py ∧ x , y]

2 ∃y [Pa ∧ Py ∧ a , y]

. . .

? ¬∀x∀y
[
(Px ∧ Py)→ x = y

]
¬∀x∀y

[
(Px ∧ Py)→ x = y

]
∃E 1, 2–?

Let’s now use another application of ∃E to eliminate the statement on line 2:

1 ∃x∃y [Px ∧ Py ∧ x , y]

2 ∃y [Pa ∧ Py ∧ a , y]

3 (Pa ∧ Pb ∧ a , b)

. . .

?? ¬∀x∀y
[
(Px ∧ Py)→ x = y

]
? ¬∀x∀y

[
(Px ∧ Py)→ x = y

]
∃E 2, 3–??

¬∀x∀y
[
(Px ∧ Py)→ x = y

]
∃E 1, 2–?

Now we’re tasked with justifying a negation. Let’s try here using an application
of ¬I:

1 ∃x∃y [Px ∧ Py ∧ x , y]

2 ∃y [Pa ∧ Py ∧ a , y]

3 (Pa ∧ Pb ∧ a , b)

4 ∀x∀y
[
(Px ∧ Py)→ x = y

]
. . .

???

?? ¬∀x∀y
[
(Px ∧ Py)→ x = y

]
¬I 4–???

? ¬∀x∀y
[
(Px ∧ Py)→ x = y

]
∃E 2, 3–??

¬∀x∀y
[
(Px ∧ Py)→ x = y

]
∃E 1, 2–?

We know that we must end our subproof with a contradiction—i.e., some
sentence and its negation. Let’s now do two applications of ∀E (the first on
line 4) to see whether we can unearth that contradiction:

ch. 11 numerical quantification 149

1 ∃x∃y [Px ∧ Py ∧ x , y]

2 ∃y [Pa ∧ Py ∧ a , y]

3 (Pa ∧ Pb ∧ a , b)

4 ∀x∀y
[
(Px ∧ Py)→ x = y

]
5 ∀y

[
(Pa ∧ Py)→ a = y

]
∀E 4

6
[
(Pa ∧ Pb)→ a = b

]
∀E 5

. . .

???

?? ¬∀x∀y
[
(Px ∧ Py)→ x = y

]
¬I 4–???

? ¬∀x∀y
[
(Px ∧ Py)→ x = y

]
∃E 2, 3–??

¬∀x∀y
[
(Px ∧ Py)→ x = y

]
∃E 1, 2–?

We can now establish our contradiction, and thus finish our proof, with a few
applications of ∧E, one application of ∧I, and an application of→E:

1 ∃x∃y [Px ∧ Py ∧ x , y]

2 ∃y [Pa ∧ Py ∧ a , y]

3 (Pa ∧ Pb ∧ a , b)

4 ∀x∀y
[
(Px ∧ Py)→ x = y

]
5 ∀y

[
(Pa ∧ Py)→ a = y

]
∀E 4

6
[
(Pa ∧ Pb)→ a = b

]
∀E 5

7 Pa ∧E 3

8 Pb ∧E 3

9 (Pa ∧ Pb) ∧I 7, 8

10 a = b →E 6, 9

11 a , b ∧E 3

12 ¬∀x∀y
[
(Px ∧ Py)→ x = y

]
¬I 4–11

13 ¬∀x∀y
[
(Px ∧ Py)→ x = y

]
∃E 2, 3–12

14 ¬∀x∀y
[
(Px ∧ Py)→ x = y

]
∃E 1, 2–13

150 forallx : SFU

Practice exercises

Part A Write a symbolization key and symbolize the following statements.
(Hint: Use ‘animals at the zoo’ as your UD.)

1. There’s a rhino at the zoo.
2. Rodney is the only rhino at the zoo.
3. There is only one rhino at the zoo.
4. There are at least two lions at the zoo.
5. There are at most two lions at the zoo.
6. There are exactly two lions at the zoo.
7. A lion is sleeping.
8. The lion is sleeping.

Part B Using the following symbolization key, translate the following state-
ments into English:

UD: The people at a certain party
Dx: x is dancing

Lxy: x loves y
a: Ashni
b: Ben

1.
(
Lab ∧ ∀x (Lxb→ x = a)

)
2. ∀z (Lzb↔ z = b)
3. ∃x∃y (Dx ∧Dy ∧ x , y)
4. ∃x

(
Lxa ∧ ∀y (Lya→ y = x) ∧ ¬Dx

)
5. ∃x∃y

(
x , y ∧ ∀z (z = x ∨ z = y)

)
Part C Show that the following are valid, using natural deduction proofs:

1. ∃x∃y (Px ∧ Py ∧ x , y)

.˙. ∃x Px

2. (Challenging)

∃x
[
Px ∧ ∀y (Py→ y = x) ∧Qx

]
.˙. ∀x∀y

[
(Px ∧ Py)→ x = y

]

ch. 11 numerical quantification 151

3. (Challenging)

∀x∀y
[
¬(Tx ∧ Ty) ∨ x = y

]
.˙. ∀x¬∃y

[
(Tx ∧ Ty) ∧ x , y

]
4. (Challenging)

∀x∀y
[
(Ax ∧ Ay)→ x = y

]
.˙. ¬∃x∃y

(
Ax ∧ Ay ∧ x , y

)
5. (Challenging)

∃x
[
Tx ∧ ∀y (Ty→ y = x)

]
.˙. ¬∃x∃y

(
Tx ∧ Ty ∧ x , y

)

Chapter 12

Quick reference

Characteristic Truth Tables

P ¬P
T F
F T

P Q (P ∧ Q) (P ∨ Q) (P → Q) (P ↔ Q)
T T T T T T
T F F T F F
F T F T T F
F F F F T T

Rules of Proof

Reiteration (R)

j P

k P R j

Conjunction Introduction (∧I)

j P

k Q

l (P ∧ Q) ∧I j, k

152

appendix: quick reference 153

Conjunction Elimination (∧E)

j (P ∧ Q)

k P ∧E j

j (P ∧ Q)

k Q ∧E j

Disjunction Introduction (∨I)

j P

k (P ∨ Q) ∨I j

j Q

k (P ∨ Q) ∨I j

Disjunction Elimination (∨E)

j (P ∨ Q)

k ¬Q

l P ∨E j, k

j (P ∨ Q)

k ¬P

l Q ∨E j, k

Conditional Introduction (→I)

j P

k Q

l (P → Q) →I j–k

Conditional Elimination (→E)

j (P → Q)

k P

l Q →E j, k

154 forallx : SFU

Biconditional Introduction (↔I)

h P

i Q

j Q

k P

l (P ↔ Q) ↔I h–i, j–k

Biconditional Elimination (↔E)

j (P ↔ Q)

k P

l Q ↔E j, k

j (P ↔ Q)

k Q

l P ↔E j, k

Identity Rules
Identity Introduction (=I)

j n = n =I 1

Identity Elimination (=E)

j Pn

k n = m

l Pm =E j, k

Quantifier Rules
Universal Introduction (∀I)

j Ac∗

k ∀x Ax ∀I j

∗ The constant c must not occur in
any undischarged assumption.

Universal Elimination (∀E)

j ∀x Ax

k Ac ∀E j

appendix: quick reference 155

Existential Introduction (∃I)

j Ac

k ∃x Ax ∃I j

Existential Elimination (∃E)

j ∃x Ax

k Ac∗

l B

m B ∃E j, k–l

∗ The constant c must not appear
in ∃x Ax , in B , or in any undis-
charged assumption.

Part III

Solutions

156

Chapter 13

Solutions to exercises

Many of the exercises may be answered correctly in different ways. Where that
is the case, the solution here represents one possible correct answer.

13.1 Chapter 1 Solutions

Chapter 1 Part A

1. Statement: England is smaller than China.
2. Statement: Greenland is south of Jerusalem.
3. Not a statement: Is New Jersey east of Wisconsin?
4. Statement: The atomic number of helium is 2.
5. Statement: The atomic number of helium is π.
6. Statement: I hate overcooked noodles.
7. Not a statement: Blech! Overcooked noodles!
8. Statement: Overcooked noodles are disgusting.
9. Not a statement: Take your time.

10. Statement: This is the last question.

Chapter 1 Part B

1. Contingent: Caesar crossed the Rubicon.
2. Contingent: Someone once crossed the Rubicon.
3. Contingent: No one has ever crossed the Rubicon.
4. Logical Truth: If Caesar crossed the Rubicon, then someone has.
5. Logical Falsehood: Even though Caesar crossed the Rubicon, no one has

ever crossed the Rubicon.
6. Contingent: If anyone has ever crossed the Rubicon, it was Caesar.

157

158 forallx : SFU

Chapter 1 Part C

1. consistent
2. inconsistent
3. consistent
4. consistent

Chapter 1 Part D

1. Possible: A valid inference that has one false premise and one true premise

1. Ottawa is the national capital of Canada. (true)
2. Ottawa is in Manitoba. (false)
3. .˙. The national capital is in Manitoba. (false)

2. Possible: A valid inference that has a false conclusion

1. Ottawa is the national capital of Canada. (true)
2. Ottawa is in Manitoba. (false)
3. .˙. The national capital is in Manitoba. (false)

3. Possible: A valid inference, the conclusion of which is a logical falsehood

1. It is raining outside.
2. It is not raining outside
3. .˙. It is both raining and not raining outside.

4. Not possible: An invalid inference, the conclusion of which is a tautology
5. Not possible: A logical truth that is contingent
6. Possible: Two logically equivalent sentences, both of which are tautologies

1. Either the Habs will make the playoffs this year or they won’t.
2. The Habs won’t both make and not make the playoffs this year.

7. Not possible: Two logically equivalent sentences, one of which is a tautol-
ogy and one of which is contingent

8. Possible: Two logically equivalent sentences that together are an incon-
sistent set

1. It is neither raining nor not raining outside.
2. It is both raining and not raining outside.

9. Not possible: A consistent set of sentences that contains a contradiction
10. Possible: An inconsistent set of sentences that contains a tautology

1. It is either raining or not raining outside.
2. It is raining outside.
3. it is not raining outside.

solutions for ch. 1 159

Chapter 1 Part E The argument can be reconstructed as follows:

1. Ashni told me that she only sees Ben once or twice a year. (Premise)
2. Ashni and Ben live far apart. (From 1)
3. Ashni and Ben don’t both live in New York. (From 2)
4. Ashni lives in New York. (Premise)
5. Ben doesn’t live in New York. (From 3, 4)

The inference from (3) and (4) to (5) is valid; the other inferences are not.

160 forallx : SFU

13.2 Chapter 2 Solutions

Chapter 2 Part A

1. Bob is a man in a suit.
Mb

2. Bob is a man in a suit or he is not.
(Mb ∨ ¬Mb)

3. Koko is either a gorilla or a chimpanzee.
(Gk ∨ Ck)

4. Bob is neither a gorilla nor a chimpanzee.
¬(Gb ∨ Cb)

5. Flo is neither a gorilla nor a man in a suit, and nor a chimpanzee.(
¬(G f ∨M f) ∧ ¬C f

)
6. Flo is either a gorilla or a chimpanzee, not a man in a suit.(

(G f ∨ C f) ∧ ¬M f
)

Chapter 2 Part B

1. Either Mister Ace or Mister Edge was murdered.
(M1a ∨M1e)

2. Mister Ace and Mister Edge weren’t both murdered.
¬(M1a ∧M1e)

3. Either the cook did it, or the butler did it.(
(M2ca ∨M2ce) ∨ (M2ba ∨M2be)

)
4. Either the butler did it, or the Duchess is lying.(

(M2ba ∨M2be) ∨ Ld
)

5. Mister Edge was murdered and the cook did it.
(Me ∧M2ce)

6. Either the murder weapon was a frying pan or the Duchess isn’t lying.
(Fw ∨ ¬Ld)

7. Either the Duchess is lying, or the culprit is either the cook or the butler.[
Ld ∨

(
(M2ca ∨M2ce) ∨ (M2ba ∨M2be)

)]
8. Either the Duchess is lying, or both Mister Edge and Mister Ace were

murdered.(
Ld ∨ (M1e ∧M1a)

)
9. Neither the butler nor the cook did it.
¬

(
(M2ca ∨M2ce) ∨ (M2ba ∨M2be)

)
10. Although the murder weapon was a frying pan, either both Mister Edge

and Mister Ace were murdered or the Duchess is lying.[
Fw ∧

(
(M1e ∧M1a) ∨ Ld

)]
11. Of course the Duchess is lying!

Ld

solutions for ch. 2 161

Chapter 2 Part C

1. Ava and Harrison are both electricians.
(Ea ∧ Eh)

2. Ava is a firefighter satisfied with her career.
(Fa ∧ Sa)

3. Ava is either a firefighter or an electrician.
(Fa ∨ Ea)

4. Harrison is an unsatisfied electrician.
(Eh ∧ ¬Sh)

5. Neither Ava nor Harrison is an electrician.
¬(Ea ∨ Eh)

6. Both Ava and Harrison are electricians, but neither of them find it satis-
fying.(
(Ea ∧ Eh) ∧ ¬(Sa ∨ Sh)

)
7. Harrison is either an unsatisfied firefighter or a satisfied electrician.(

(¬Sh ∧ Fh) ∨ (Sh ∧ Eh)
)

8. Harrison and Ava are both firefighters who are satisfied with their careers.(
(Fh ∧ Fa) ∧ (Sh ∧ Sa)

)
9. Either Harrison and Ava are both firefighters or neither of them is a

firefighter.(
(Fh ∧ Fa) ∨ ¬(Fh ∨ Fa)

)
Chapter 2 Part D Here is how you can translate an exclusive or using only
two connectives:(
¬(¬P ∧ ¬Q) ∧ ¬(P ∧Q)

)

162 forallx : SFU

13.3 Chapter 3 Solutions

Chapter 3 Part A

1. As the following truth table shows, this sentence is a contradiction.

Hab (¬Hab∧Hab)
T F F
F T F

2. As the following truth table shows, this sentence is neither a tautology
nor a contradiction. It is a tautologically contingent statement.

Pa Hab (¬ Pa∨Hab)
T T F T
T F F F
F T T T
F F T T

3. As the following truth table shows, this sentence is a tautology.

Rcd (¬Rcd∨Rcd)
T F T
F T T

4. As the following truth table shows, this sentence is neither a tautology
nor a contradiction. It is a tautologically contingent statement.

Pa Hab
(
(Pa∧Hab)∨ (Hab∧ Pa)

)
T T T T T
T F F F F
F T F F F
F F F F F

5. As the following truth table shows, this sentence is a contradiction.

Pa Hab Tc
[(

(Pa∧Hab)∧¬ (Pa∧Hab)
)
∧ Tc
]

T T T T F F T F
T T F T F F T F
T F T F F T F F
T F F F F T F F
F T T F F T F F
F T F F F T F F
F F T F F T F F
F F F F F T F F

solutions for ch. 3 163

6. As the following truth table shows, this sentence is neither a tautology
nor a contradiction. It is a tautologically contingent statement.

Pa Hab
[(

(Pa∧Hab)∨ (Pa∧¬Hab)
)
∨¬Hab

]
T T T T F F T F
T F F T T T T T
F T F F F F F F
F F F F F T T T

Chapter 3 Part B

1. The following joint truth table shows that the sentences are not tautolog-
ically equivalent:

Pa Pa ¬ Pa
T T F
F F T

2. The following joint truth table shows that the sentences are tautologically
equivalent:

Pa Pa (Pa ∨ Pa)
T T T
F F F

3. The following joint truth table shows that the sentences are tautologically
equivalent:

Pa Hab ¬ (Pa∧Hab) (¬ Pa∨¬Hab)
T T F T F F F
T F T F F T T
F T T F T T F
F F T F T T T

4. The following joint truth table shows that the sentences are not tautolog-
ically equivalent:

Pa Hab Tc
(
(Pa∨Hab)∧ Tc

) (
Pa∨ (Hab∧ Tc)

)
T T T T T T T
T T F T F T F
T F T T T T F
T F F T F T F
F T T T T T T
F T F T F F F
F F T F F F F
F F F F F F F

164 forallx : SFU

Chapter 3 Part C

1. The following joint truth table shows that the argument is tautologically
valid:

Pa Hab Tc (Pa∧Hab) Tc (Hab∧ Tc)
T T T T T T
T T F T F F
T F T F T F
T F F F F F
F T T F T T
F T F F F F
F F T F T F
F F F F F F

2. The following joint truth table shows that the argument is not tautologi-
cally valid:

Pa Hab Tc (Pa∨Hab) Tc (Hab∧ Tc)
T T T T T T
T T F T F F
T F T T T F ⋆
T F F T F F
F T T T T T
F T F T F F
F F T F T F
F F F F F F

3. The following joint truth table shows that the argument is not tautologi-
cally valid:

Pa Hab Tc (Pa∨Hab) (Hab∨ Tc) ¬ Pa (Hab∧ Tc)
T T T T T F T
T T F T T F F
T F T T T F F
T F F T F F F
F T T T T T T
F T F T T T F ⋆
F F T F T T F
F F F F F T F

solutions for ch. 3 165

4. The following joint truth table shows that the argument is tautologically
valid:

Pa Hab Tc (Pa∨Hab) (Hab∨ Tc) ¬Hab (Pa∧ Tc)
T T T T T F T
T T F T T F F
T F T T T T T
T F F T F T F
F T T T T F F
F T F T T F F
F F T F T T F
F F F F F T F

Chapter 3 Part D

Given the definitions of ‘tautology’ and ‘contradiction’, it follows that
there cannot be any atomic tautology or contradiction.

166 forallx : SFU

13.4 Chapter 4 Solutions

Chapter 4 Part A

1. If Flo is a chimpanzee, then she is not a gorilla.
(C f → ¬G f)

2. If Koko is not a man in a suit, then she’s either a chimpanzee or a gorilla.(
¬Mk→ (Ck ∨ Gk)

)
3. If Bob is a chimpanzee, then he is neither a gorilla nor a chimpanzee.(

Cb→ ¬(Gb ∨ Cb)
)

4. Unless Bob is a man in a suit, he is either a chimpanzee or a gorilla.(
¬Mb→ (Cb ∨ Gb)

)
Chapter 4 Part B

1. If Mister Ace was murdered, then the cook did it.
(M1a→M2ca)

2. If Mister Edge was murdered, then the cook did not do it.
(M1e→ ¬M2ce)

3. The cook did it only if the Duchess is lying.
(M2ca→ Ld)

4. If the murder weapon was a frying pan, then the culprit must have been
the cook.
(Fw→M2ca)

5. If the murder weapon was not a frying pan, then the culprit was either
the cook or the butler.(
¬Fw→ (M2ca ∨M2be)

)
6. Mister Ace was murdered if and only if Mister Edge was not murdered.

(M1a↔ ¬M1e)
7. The Duchess is lying, unless it was Mister Edge who was murdered.

(¬M1e→ Ld)
8. If Mister Ace was murdered, he was murdered with a frying pan.

(M1a→ Fw)

Chapter 4 Part C

1. If Ava is a firefighter, then she is satisfied with her career.
(Fa→ Sa)

2. Ava is a firefighter, unless she is an electrician.
(¬Ea→ Fa)

3. Harrison is satisfied only if he is firefighter.
(Sh→ Fh)

solutions for ch. 4 167

4. If Ava is not an electrician, then neither is Harrison, but if she is, then he
is too.(
(¬Ea→ ¬Eh) ∧ (Ea→ Eh)

)
5. Ava is satisfied with her career if and only if Harrison is not satisfied with

his.
(Sa↔ ¬Sh)

6. If Harrison is both an electrician and a firefighter, then he must be satisfied
with his work.(
(Eh ∧ Fh)→ Sh

)
7. Harrison and Ava are both firefighters if and only if neither of them is an

electrician.(
(Fh ∧ Fa)↔ ¬(Eh ∨ Ea)

)
Chapter 4 Part D

Consider the following symbolization key:

R1x: x has been broken
R2xy: x broke y

Sx: x is a spy
Ux: x is in uproar

a: Alice
b: Bob
c: the code
g: the German embassy

The sentences can be translated thusly:

1. Alice and Bob are both spies.
(Sa ∧ Sb)

2. If either Alice or Bob is a spy, then the code has been broken.(
(Sa ∨ Sb)→ R1c

)
3. If neither Alice nor Bob is a spy, then the code remains unbroken.(
¬(Sa ∨ Sb)→ ¬R1c

)
4. The German embassy will be in an uproar, unless someone has broken

the code.(
¬(R2ac ∧ R2bc)→ Ug

)
5. Either the code has been broken or it has not, but the German embassy

will be in an uproar regardless.(
(R1c ∨ ¬R1c) ∧Ug

)
6. Either Alice or Bob is a spy, but not both.
¬(Sa↔ Sb)

168 forallx : SFU

Chapter 4 Part E

1. Consider the following symbolization key:

Cx: x wakes up cranky
Dx: x is distracted
Px: x plays the piano in the morning

o: Dorthy
r: Roger

The argument can be translated thusly:

(Po→ Cr), (¬Dr→ Po) .˙. (¬Cr→ Do)

2. Consider the following symbolization key:

Px: The precipitation is x
Cx: x is cold
Sx: x is sad

n: Neville
o: snow
r: rain

The argument can be translated thusly:

(Pr ∨ Po), (Pr→ Sn), (Po→ Cn) .˙. (Sn ∨ Cn)

3. Consider the following symbolization key:

Cx: x is clean
Nx: x is neat
Rx: x remembered to do his chores

o: Zoog
t: things

The argument can be translated thusly:(
Ro→ (Ct ∧ ¬Nt)

)
,
(
¬Ro→ (Nt ∧ ¬Ct)

)
.˙. ¬(Nt↔ Ct)

Chapter 4 Part F

1. Valid: (Pa→ Qa), Pa .˙. Qa

Pa Qa (Pa→ Qa) Pa Qa
T T T T T
T F F T F
F T T F T
F F T F F

solutions for ch. 4 169

2. Invalid: (Pa→ Qa), Qa .˙. Pa

Pa Qa (Pa→ Qa) Qa Pa
T T T T T
T F F F T
F T T T F ⋆
F F T F F

3. Valid: (Pa→ Qa), ¬Qa .˙. ¬Pa

Pa Qa (Pa→ Qa) ¬Qa ¬ Pa
T T T F F
T F F T F
F T T F T
F F T T T

4. Invalid: (Pa→ Qa), ¬Pa .˙. ¬Qa

Pa Qa (Pa→ Qa) ¬ Pa ¬Qa
T T T F F
T F F F T
F T T T F ⋆
F F T T T

5. Valid: (Pa↔ Qa) .˙. (Qa↔ Pa)

Pa Qa (Pa↔ Qa) (Qa↔ Pa)
T T T T
T F F F
F T F F
F F T T

6. Valid: (Pa↔ Qa) .˙. (¬Pa↔ ¬Qa)

Pa Qa (Pa↔ Qa) (¬ Pa↔¬Qa)
T T T F T F
T F F F F T
F T F T F F
F F T T T T

7. Valid: (Pa↔ Qa) .˙. (Pa ∨ ¬Qa)

Pa Qa (Pa↔ Qa) (Pa∨¬Qa)
T T T T F
T F F T T
F T F F F
F F T T T

170 forallx : SFU

8. Valid: (Pa→ Qa) .˙. (¬Qa→ ¬Pa)

Pa Qa (Pa→ Qa) (¬Qa→¬ Pa)
T T T F T F
T F F T F F
F T T F T T
F F T T T T

9. Invalid: (Pa→ Qa) .˙. (¬Pa→ ¬Qa)

Pa Qa (Pa→ Qa) (¬ Pa→¬Qa)
T T T F T F
T F F F T T
F T T T F F ⋆
F F T T T T

10. Valid: (Pa→ Qa), (Qa→ Ra) .˙. (Pa→ Ra)

Pa Qa Ra (Pa→ Qa) (Pa→ Qa) (Qa→ Ra)
T T T T T T
T T F T F F
T F T F T T
T F F F T F
F T T T T T
F T F T F T
F F T T T T
F F F T T T

11. Valid:
(
Pa ∨ (Qa→ Pa)

)
.˙. (¬Pa→ ¬Qa)

Pa Qa
(
Pa∨ (Qa→ Pa)

)
(¬ Pa→¬Qa)

T T T T F T F
T F T T F T T
F T F F T F F
F F T T T T T

Chapter 4 Part G

1. Since we’re given that the Boolean connectives are truth-functionally
complete, all we need to do to show that the set {¬,∧} is also truth-
functionally complete is to show that we can express∨ using just¬ and∧.
A joint truth table will show that we can express (P∨Q) using¬(¬P∧¬Q):

P Q (P ∨Q) ¬ (¬ P∧¬Q)
T T T T F F F
T F T T F F T
F T T T T F F
F F F F T T T

solutions for ch. 4 171

2. Similarly, we can show that the set {¬,∨} is also truth-functionally com-
plete by constructing a joint truth table showing that we can express P∧Q
using ¬(¬P ∨ ¬Q):

P Q (P ∧Q) ¬ (¬ P∨¬Q)
T T T T F F F
T F F F F T T
F T F F T T F
F F F F T T T

Chapter 4 Part H

We can express the ternary connective ♣ using just the Boolean connec-
tives with the following sentence schema:

(
(P ∧Q) ∨ (¬P ∧ R)

)

172 forallx : SFU

13.5 Chapter 5 Solutions

Chapter 5 Part A

1. The mistake is at line 4: The→E rule allows us to derive the consequent
of a conditional if we also have the antecedent. Line 4 attempts to derive
the antecedent from the consequent.

2. The mistake is at line 5: the ∨I rule requires citing only one line, and here
it’s citing two. All we need is ‘∨I 3’.

3. The mistake is at line 2: The brackets are misplaced. The result of the ∧I
rule does not change the placement of brackets.

4. There are two mistakes. First, there are missing brackets on line 4. Second,
there is no rule that gets us the sentence ¬¬Mp from Mp in one step. As
we’ll see in chapter 6, this inference requires the use of subproofs.

Chapter 5 Part B

1.

1 (Qee ∧ Ga)

2 (Ha ∧ Rde)

3 Ga ∧E 1

4 Ha ∧E 2

5 (Ga ∧Ha) ∧I 3, 4

2.

1 (Hb ∧ Rde)

2 Hb ∧E 1

3 (Hb ∨ a = b) ∨I 2

solutions for ch. 5 173

3.

1 (Qee→ ¬Ga)

2 (Hb ∧Qee)

3
(
Ga ∨ (Gb ∧ Gc)

)
4 Qee ∧E 2

5 ¬Ga →E 1, 4

6 (Gb ∧ Gc) ∨E 3, 5

7 Gc ∧E 6

4.

1 (a , b→ a = c)

2
(
Pa ∧ (a = b ∨ Rad)

)
3 a , b

4 Pa ∧E 2

5 (a = b ∨ Rad) ∧E 2

6 Rad ∨E 3, 5

7 a = c →E 1, 3

8 Pc =E 4, 7

9 Rcd =E 6, 7

10 (Pc ∧ Rcd) ∧I 8, 9

11 b = b =I

12
(
b = b ∧ (Pc ∧ Rcd)

)
∧I 10, 11

174 forallx : SFU

Chapter 5 Part C

1.

1 Ba

2
(
Ba→ (Cga ∧De)

)
3 (Cga ∧De) →E 1, 2

4 Cga ∧E 3

2.

1
(
(Tea ∨Mai)→ Uc

)
2 Tea

3 (Tea ∨Mai) ∨I 2

4 Uc →E 1, 3

3.

1 Pa

2 Qg

3 (Pa ∧Qg) ∧I 1, 2

4
(
(Pa ∧Qg) ∨ Tjk

)
∨I 3

4.

1
(
(He ∧ Sea) ∨ See

)
2

(
Gb→ ¬(He ∧ Sea)

)
3 (Gb ∧He)

4 Gb ∧E 3

5 ¬(He ∧ Sea) →E 2, 4

6 See ∨E 1, 5

7 He ∧E 3

8 (He ∧ See) ∧I 6, 7

solutions for ch. 5 175

5.

1 d , f

2 (a = b ∨ d = f)

3 (a = b→ Tab)

4 (Tbb→ ¬Hu)

5 (Hu ∨Hi)

6 a = b ∨E 1, 2

7 Tab →E 3, 6

8 Tbb =E 6, 7

9 ¬Hu →E 4, 8

10 Hi ∨E 5, 9

11 c = c =I

12 (Hi ∧ c = c) ∧I 10, 11

6.

1
(
(Te ∨ Ga) ∨ Lo

)
2

(
Rbc→ ¬(Te ∨ Ga)

)
3

(
Lo→ (¬Te ∧ ¬Ga)

)
4 Raa

5 a = b

6 b = c

7 Rba =E 4, 5

8 Rbb =E 5, 7

9 Rbc =E 6, 8

10 ¬(Te ∨ Ga) →E 2, 9

11 Lo ∨E 1, 10

12 (¬Te ∧ ¬Ga) →E 3, 11

13 ¬Ga ∧E 12

176 forallx : SFU

13.6 Chapter 6 Solutions

Chapter 6 Part A

1. The mistake is at line 4: We haven’t yet discharged our assumption.
When using the→I rule, we discharge the assumption.

2. The mistake is at line 4: The justification should use a dash, rather than
a comma since we’re citing the entire subproof. That is, it should read
‘→I 2-3’.

3. The mistake is at line 10: At this step, line 7 has been discharged and is
no longer in force. So, it cannot be used in any justification outside of the
subproof.

4. The mistake is at line 6: The proper use of→I requires that the subproof
ends with the consequent of the conditional claim that it justifies.

Chapter 6 Part B

1.

1
(
Tu→ (Rc ∧Oae)

)
2 Tu

3 (Rc ∧Oae) →E 1, 2

4 Rc ∧E 3

5 (Tu→ Rc) →I 2–4

2.

1 (Tu→ Rc)

2 Tu

3 Rc →E 1, 2

4 (Rc ∨ a = a) ∨I 3

5
(
Tu→ (Rc ∨ a = a)

)
→I 2–4

3.

1 Gb

2 a = b

3
(
Gb ∧ a = b

)
∧I 1, 2

4
(
a = b→ (Gb ∧ a = b)

)
→I 2–3

solutions for ch. 6 177

Chapter 6 Part C

1.

1 ¬Tu

2
(
Tu ∧ a = b

)
for reductio

3 Tu ∧E 2

4 ¬Tu R 1

5 ¬

(
Tu ∧ a = b

)
¬I 2–4

2.

1 ¬(Ugg ∨ Ta)

2 Ugg for reductio

3 (Ugg ∨ Ta) ∨I 2

4 ¬(Ugg ∨ Ta) R 1

5 ¬Ugg ¬I 2–4

3.

1 ¬Ta

2
(
a = b→ Ta

)
3 a = b for reductio

4 Ta →E 2, 3

5 ¬Ta R 1

6 a , b ¬I 3–5

Chapter 6 Part D

The First Argument

Consider the following symbolization key:

Ix: x is Immoral
p: The Parisian cat-burnings

m: Modern pig framing
b: Buying pork

178 forallx : SFU

The inference is:

Ip
(Ip→ Im)
(Im→ Ib)

.˙. Ib

This is a valid inference, as the following natural deduction proof shows:

1 Ip

2 (Ip→ Im)

3 (Im→ Ib)

4 Im →E 1, 2

5 Ib →E 3, 5

The Second Argument

Consider the following symbolization key:

Cxy: x was created by y
Tx: x is the same in all times and places
Sx: x is a social construction

g : God
m : Moral rules

The inference is:

(Cmg→ Tm)
¬Tm
(Cmg ∨ Sm)

.˙. Sm

This is a valid inference, as the following natural deduction proof shows:

1 (Cmg→ Tm)

2 ¬Tm

3 (Cmg ∨ Sm)

4 ¬Sm

5 Cmg ∨E 4, 3

6 Tm →E 5, 1

7 ¬Tm R 2

8 Sm ¬E 4–7

solutions for ch. 6 179

The Third Argument

Consider the following symbolization key:

Dx: x is on the desk in my office
Mx: x will miss their flight
Hx: x is at home

Fxy: x found y
p: My passport
i: I (me)
e: My wife

The inference is:

(Dp→Mi)
(¬Hp→ Dp)(
(Hp→ Fep) ∧ ¬Fep

)
.˙. Mi

This is a valid inference, as the following natural deduction proof shows:

1 (Dp→Mi)

2 (¬Hp→ Dp)

3
(
(Hp→ Fep) ∧ ¬Fep

)
4 (Hp→ Fep) ∧E 3

5 Hp

6 Fep →E 5, 6

7 ¬Fep ∧E 3

8 ¬Hp ¬I 5–7

9 Dp →E 2, 8

10 Mi →E 1, 9

180 forallx : SFU

Chapter 6 Part E

The first argument is valid, the second is not.

Valid: Ra, (Ra→ Tu) .˙.
(
(Ra ∨ Gc) ∧ Tu

)
1 Ra

2 (Ra→ Tu)

3 (Ra ∨ Gc) ∨I 1

4 Tu →E 1, 2

5
(
(Ra ∨ Gc) ∧ Tu

)
∧I 3, 4

Invalid: Ra, (Ra→ Tu) .˙.
(
(Ra ∧ Gc) ∧ Tu

)
Ra Gc Tu (Ra→ Tu)

(
(Ra∧Gc)∧ Tu

)
T T T T T T
T T F F T F
T F T T F F ⋆
T F F F F F
F T T T F F
F T F T F F
F F T T F F
F F F T F F

solutions for ch. 6 181

Chapter 6 Part F

1.

1
(
Ra→ (b = c ∧ c = d)

)
2 Ra

3 (b = c ∧ c = d) →E 1, 2

4 b = c ∧E 3

5 (Ra→ b = c) →I 2–4

6 Ra

7 (b = c ∧ c = d) →E 1, 6

8 c = d ∧E 7

9 (Ra→ c = d) ∧I 1–8

10
(
(Ra→ b = c) ∧ (Ra→ c = d)

)
∧I 5, 9

2.

1 ¬(Ra ∨ Gb)

2 Ra for reductio

3 (Ra ∨ Gb) ∨I 2

4 ¬(Ra ∨ Gb) R 1

5 ¬Ra ¬I 2–4

6 Gb for reductio

7 (Ra ∨ Gb) ∨I 6

8 ¬(Ra ∨ Gb) R 1

9 ¬Gb ¬I 6–8

10 (¬Ra ∧ ¬Gb) ∧I 5, 9

182 forallx : SFU

3.

1 (¬Ra ∧ ¬Gb)

2 (Ra ∨ Gb) for reductio

3 ¬Ra ∧E 1

4 Gb ∨E 2, 3

5 ¬Gb ∧E 1

6 ¬(Ra ∨ Gb) ¬I 2–5

solutions for ch. 6 183

Chapter 6 Part G

1

2 ¬(Ra ∧ Gb)

3 ¬(¬Ra ∨ ¬Gb) for reductio

4 Ra for reductio

5 ¬Gb for reductio

6 (¬Ra ∨ ¬Gb) ∨I 5

7 ¬(¬Ra ∨ ¬Gb) R 3

8 Gb ¬E 5–7

9 (Ra ∧ Gb) ∧I 4, 8

10 ¬(Ra ∧ Gb) R 2

11 ¬Ra ¬I 4–10

12 (¬Ra ∨ ¬Gb) ∨I 11

13 ¬(¬Ra ∨ ¬Gb) R 3

14 (¬Ra ∨ ¬Gb) ¬E 3–13

15 (¬Ra ∨ ¬Gb)

16 (Ra ∧ Gb) for reductio

17 Ra ∧E 16

18 ¬Ra for reductio

19 Ra R 17

20 ¬¬Ra ¬I 18–19

21 ¬Gb ∨E 15, 20

22 Gb ∧E 16

23 ¬(Ra ∧ Gb) ¬I 16–22

24 (¬(Ra ∧ Gb)↔ (¬Ra ∨ ¬Gb)) ↔ 2–14, 15–23

184 forallx : SFU

13.7 Chapter 7 Solutions

Chapter 7 Part A

1. Ashni is a mathematician.
Ma

2. Ashni is a philosopher.
Pa

3. Ashni is either a mathematician or a philosopher.
(Ma ∨ Pa)

4. Ashni admires Ben.
Dab

5. Ben admires Ashni.
Dba

6. Ashni and Ben admire each other.
(Dab ∧Dba)

7. Ashni is a mathematician and she admires Ben.
(Ma ∧Dab)

8. Ashni and Ben are mathematicians who admire each other.(
(Ma ∧Mb) ∧ (Dab ∧Dba)

)
9. Everyone is a mathematician. (i.e. Everyone at the party is a mathemati-

cian.)
∀xMx

10. Everyone is either a mathematician or a philosopher.
∀x(Mx ∨ Px)

11. Everyone admires Ashni.
∀xDxa

12. Ashni admires everyone.
∀xDax

13. Every mathematician admires Ashni.
∀x(Mx→ Dxa)

14. Everyone who admires Ashni is either a mathematician or a philosopher.
∀x
(
Dxa→ (Mx ∨ Px)

)
Chapter 7 Part B

Mx: x is a mouse
Ax: x is a mammal
Ex: x is an elephant

Bxy: x is bigger than y
j: Jerry

u: Jumbo

1. Jerry is a mouse.
Mj

solutions for ch. 7 185

2. Jerry is a mammal.
Aj

3. Jumbo is an elephant.
Eu

4. Jumbo is bigger than Jerry.
Buj

5. Every mouse is a mammal / Mice are mammals / A mouse is always a
mammal.
∀x(Mx→ Ax)

6. Mice and elephants are mammals.(
∀x(Mx→ Ax) ∧ ∀y(Ey→ Ay)

)
Chapter 7 Part C

1. Valid
Everyone at the party is wearing red.
Everyone who is wearing red is cool.

.˙. Everyone at the party is cool.

2. Invalid
Nobody at the party is wearing red.
Nobody who is wearing red is cool.

.˙. Nobody at the party is cool.

3. Invalid
Everyone who likes Nickelback is cool.

.˙. Everyone who’s cool likes Nickelback.

4. Valid
Everyone who likes Nickelback is cool.

.˙. Anyone who isn’t cool doesn’t like Nickelback.

5. Valid
Nobody who likes Nickelback is cool.

.˙. Nobody who’s cool likes Nickelback.

186 forallx : SFU

Chapter 7 Part D

English Symbols

Someone loves Ashni. ∃x Lxa

Ben and someone love each other. ∃x (Lbx ∧ Lxb)

Someone who is dancing and chatting likes Ben. ∃x
(
(Dx ∧ Cx) ∧ Lxb

)
Someone’s dancing and someone’s not. (∃x Dx ∧ ∃y¬Dy)

If someone is chatting, then someone is dancing. (∃x Cx → ∃y Dy)

Either everyone is dancing, or someone is not dancing. (∀x Dx ∨ ∃y¬Dy)

Chapter 7 Part E

1. Amos, Bouncer, and Cleo all live at the zoo.(
Zs ∧ (Zb ∧ Zc)

)
2. Bouncer is a reptile, but not an alligator.

(Rb ∧ ¬Ab)
3. If Cleo loves Bouncer, then Bouncer is a monkey.

(Lcb→Mb)
4. If both Bouncer and Cleo are alligators, then Amos loves them both.(

(Ab ∧ Ac)→ (Lsb ∧ Lsc)
)

5. Some reptile lives at the zoo.
∃x (Rx ∧ Zx)

6. Every alligator is a reptile.
∀x (Ax→ Rx)

7. Any animal that lives at the zoo is either a monkey or an alligator.
∀x
(
Zx→ (Mx ∨ Ax)

)
8. There are reptiles which are not alligators.
∃x (Rx ∧ ¬Ax)

9. Cleo loves a reptile.
∃x (Rx ∧ Lcx)

solutions for ch. 7 187

10. Bouncer loves all the monkeys that live at the zoo.
∀x
(
(Mx ∧ Zx)→ Lbx

)
11. All the monkeys that Amos loves love him back.
∀x
(
(Mx ∧ Lsx)→ Lxs

)
12. If any animal is a reptile, then Amos is.

(∃x Rx→ Rs)
13. If any animal is an alligator, then it is a reptile.
∀x (Ax→ Rx)

14. Every monkey that Cleo loves is also loved by Amos.
∀x
(
(Mx ∧ Lcx)→ Lsx

)
15. There is a monkey that loves Bouncer, but sadly Bouncer does not recip-

rocate this love.
∃x
(
(Mx ∧ Lxb) ∧ ¬Lbx

)
Chapter 7 Part F

Baralipton: All Bs are Cs. All As are Bs. .˙. Some C is A.
∀x (Bx→ Cx), ∀y (Ay→ By) .˙. ∃z (Cz ∧ Az)

Barbara: All Bs are Cs. All As are Bs. .˙. All As are Cs.
∀x (Bx→ Cx), ∀y (Ay→ By) .˙. ∀z (Az→ Cz)

Baroco: All Cs are Bs. Some A is not B. .˙. Some A is not C.
∀x (Cx→ Bx), ∃y (Ay ∧ ¬By) .˙. ∃z (Az ∧ ¬Cz)

Bocardo: Some B is not C. All As are Bs. .˙. Some A is not C.
∃x (Bx ∧ ¬Cx), ∀y (Ay→ By) .˙. ∃z (Az ∧ ¬Cz)

Celantes: No Bs are Cs. All As are Bs. .˙. No Cs are As.
∀x (Bx→ ¬Cx), ∀y (Ay→ By) .˙. ∀z (Cz→ ¬Az)

Calarent: No Bs are Cs. All As are Bs. .˙. No As are Cs.
∀x (Bx→ ¬Cx), ∀y (Ay→ By) .˙. ∀z (Az→ ¬Cz)

Cemestres: No Cs are Bs. No As are Bs. .˙. No As are Cs.
∀x (Cx→ ¬Bx), ∀y (Ay→ ¬By) .˙.∀z (Az→ ¬Cz)

Cesare: No Cs are Bs. All As are Bs. .˙. No As are Cs.
∀x (Cx→ ¬Bx), ∀y (Ay→ By) .˙. ∀z (Az→ ¬Cz)

Dabitis: All Bs are Cs. Some A is B. .˙. Some C is A.
∀x (Bx→ Cx), ∃y (Ay ∧ By) .˙. ∃z (Cz ∧ Az)

Darii: All Bs are Cs. Some A is B. .˙. Some A is C.
∀x (Bx→ Cx), ∃y (Ay ∧ By) .˙. ∃z (Az ∧ Cz)

188 forallx : SFU

Datisi: All Bs are Cs. Some B is A. .˙. Some C is A.
∀x (Bx→ Cx), ∃y (By ∧ Ay) .˙. ∃z (Cz ∧ Az)

Disamis: Some A is B. All As are Cs. .˙. Some B is C.
∃x (Ax ∧ Bx), ∀y (Ay→ Cy) .˙. ∃z (Bz ∧ Cz)

Ferison: No Bs are Cs. Some B is A. .˙. Some A is not C.
∀x (Bx→ ¬Cx), ∃y (By ∧ Ay) .˙. ∃z (Az ∧ ¬Cz)

Ferio: No Bs are Cs. Some A is B. .˙. Some A is not C.
∀x (Bx→ ¬Cx), ∃y (Ay ∧ By) .˙. ∃z (Az ∧ ¬Cz)

Festino: No Cs are Bs. Some A is B. .˙. Some A is not C.
∀x (Cx→ ¬Bx), ∃y (Ay ∧ By) .˙. ∃z (Az ∧ ¬Cz)

Frisesomorum: Some B is C. No As are Bs. .˙. Some C is not A.
∃x (Bx ∧ Cx), ∀y (Ay→ ¬By) .˙. ∃z (Cz ∧ ¬Az)

Chapter 7 Part G

1. Bertie is a dog who likes samurai movies.
(Db ∧ Sb)

2. Bertie, Emerson, and Fergis are all dogs.(
(Db ∧De) ∧D f

)
3. Emerson is larger than Bertie, and Fergis is larger than Emerson.

(Leb ∧ L f e)
4. All dogs like samurai movies.
∀x (Dx→ Sx)

5. Only dogs like samurai movies.
∀x (Sx→ Dx)

6. There is a dog that is larger than Emerson.
∃x (Dx ∧ Lxe)

7. If there is a dog larger than Fergis, then there is a dog larger than Emerson.(
∃x (Dx ∧ Lx f)→ ∃y (Dy ∧ Lye)

)
8. No animal that likes samurai movies is larger than Emerson.
∀x (Sx→ ¬Lxe)

9. No dog is larger than Fergis.
∀x (Dx→ ¬Lx f)

10. Any animal that dislikes samurai movies is larger than Bertie.
∀x (¬Sx→ Lxb)

11. There is an animal that is between Bertie and Emerson in size.
∃x (Lxb ∧ Lex)

12. There is no dog that is between Bertie and Emerson in size.
∀x
(
Dx→ ¬(Lxb ∧ Lex)

)
13. No dog is larger than itself.
∀x (Dx→ ¬Lxx)

solutions for ch. 7 189

Chapter 7 Part H

1. Consider the following symbolization key:

UD: Things on my desk
Cx: x is a computer
Ex: x escapes my attention

Here is a translation in FOL:

¬∃x Ex, ∃x Cx .˙. ∃x (Cx ∧ ¬Ex)

2. Consider the following symbolization key:

UD: Everything
Bx: x is black and white
Dx: x is my dream
Sx: x is an old TV show

Here is a translation in FOL:

∀x (Dx→ Bx), ∀x (Sx→ Bx) .˙. ∃x (Dx ∧ Sx)

3. Consider the following symbolization key:

UD: People
Ax: x has been to Australia
Zx: x has been to a zoo
Kx: x has seen a kangaroo

h: Holmes
t: Watson

Here is a translation in FOL:

¬(Ah ∨ At), ∀x
(
Kx→ (Ax ∨ Zx)

)
, (¬Kt ∧ Kh) .˙. Zh

4. Consider the following symbolization key:

UD: People
Ex: x expects the Spanish Inquisition
Kx: x knows the troubles I’ve seen

Here is a translation in FOL:

∀x¬Ex, ∀x¬Kx, .˙. ∀x (Ex→ Kx)

5. Consider the following symbolization key:

UD: People
Bx: x is a baby
Cx: x can manage a crocodile
Ix: x is illogical
e: Berthold

Here is a translation in FOL:

∀x (Bx→ Ix), ∀x (Ix→ ¬Cx), Be .˙. ¬Ce

190 forallx : SFU

Chapter 7 Part I

1. Boris has never tried any candy.
∀x¬Tbx

2. Marzipan is always made with sugar.
∀x (Mx→ Sx)

3. Some candy is sugar-free.
∃x¬Sx

4. No candy is better than itself.
¬∃x Bxx

5. Boris has never tried sugar-free chocolate.
∀x
(
(Cx ∧ ¬Sx)→ ¬Tbx

)
6. Boris has tried marzipan and chocolate, but never together.(

[∃x (Mx ∧ Tbx) ∧ ∃y (Cy ∧ Tby)] ∧ ¬∃z [(Mz ∧ Cz) ∧ Tbz]
)

Chapter 7 Part J

1. All the food is on the table.
∀x (Fx→ Tx)

2. If the guacamole has not run out, then it is on the table.
(¬Rg→ Tg)

3. Everyone likes the guacamole.
∀x (Px→ Lxg)

4. If anyone likes the guacamole, then Eli does.
(∃x Lxg→ Leg)

5. Francesca only likes the dishes that have run out.
∀x
(
(Fx ∧ L f x)→ ¬Rx

)
6. Francesca likes no one, and no one likes Francesca.

(∀x¬L f x ∧ ∀y¬Ly f)
7. Eli likes anyone who likes the guacamole.
∀x (Lxg→ Lex)

Chapter 7 Part K

1. All of Patrick’s children are ballet dancers.
∀x (Cxp→ Dx)

2. Jane is Patrick’s daughter.
(Fj ∧ Cjp)

3. Patrick has a daughter.
∃x (Cxp ∧ Fx)

4. Jane is an only child.
¬∃x Sxj

5. All of Patrick’s daughters dance ballet.
∀x
(
(Cxp ∧ Fx)→ Dx

)

solutions for ch. 7 191

6. Patrick has no sons.
¬∃x (Mx ∧ Cxp)

Chapter 7 Part L

Bound:
Free:

1. (∃x L x y ∧ ∀y L y x)
Bound variables: the ’x’ of the first instantiation of Lxy and the ’y’ of the
second instantiation of Lxy.
Free variables: the ’y’ of the first instantiation of Lxy and the ’x’ of the
second instantiation of Lxy.

2. (∀x A x ∧ B x)
Bound variables: the ’x’ of Ax.
Free variables: the ’x’ of Bx.

3.
(
∀x (A x ∧ B x) ∧ ∀y (Ax ∧D y)

)
Bound variables: the ’x’ of the first instantiation of Ax, the ’x’ of Bx, and
the ’y’ of Dy.
Free variables: the ’x’ of the second instantiation of Ax.

4.
(
∀x∃y [R xy → (Jz ∧ K x)] ∨ Ryx

)
Bound variables: the ’x’ and ’y’ of the first instantiation of Rxy and the
’x’ of Kx.
Free variables: the ’z’ of Jz and the ’x’ and ’y’ of Rxy.

5.
(
∀x (My↔ Ly x) ∧ ∃y Lz y

)
Bound variables: the x of Lyx and the y of Lzy.
Free variables: the y of My, the y of Lyx, and the z of Lzy.

192 forallx : SFU

13.8 Chapter 8 Solutions

Chapter 8 Part A

1. Every step contains a mistake. When using the E rule we need to substi-
tute every instance of a variable with a constant. ‘x’ is not a constant; it
is a variable.

2. The mistake is at step 4. The first premise is a material conditional claim,
not a universal generalization. So, we cannot use ∀E on step 1.

3. The mistake is on step 5. The ∀I rule requires that the constant c on which
we are generalizing doesn’t appear in any undischarged assumption. But
a appears in the premises, which count as undischarged assumptions.

Chapter 8 Part B

1.

1 ∀x(Cx→ Dx)

2 Ca

3 (Ca→ Da) ∀E 1

4 Da →E 2, 3

2.

1 ∀x
(
(Cx ∧ Lxa)→ Dx

)
2 Cb

3 Lba

4
(
(Cb ∧ Lba)→ Db

)
∀E 1

5 (Cb ∧ Lba) ∧I 2, 3

6 Db →E 4, 5

solutions for ch. 8 193

3.

1 ∀xCx

2 ∀xDx

3 Ca ∀E 1

4 Da ∀E 2

5 (Ca ∧Da) ∧I 3, 4

Chapter 8 Part C

1.

1 ∀x(Cx ∧Dx)

2 (Ce ∧De) ∀E 1

3 Ce ∧E 2

4 ∀xCx ∀I 3

2.

1 ∀x(Cx→ Dx)

2 ∀xCx

3 (Ce→ De) ∀E 1

4 Ce ∀E 2

5 De →E 3, 4

6 ∀xDx ∀I 5

194 forallx : SFU

3.

1 ∀x(Cx→ Dx)

2 (Ce→ De) ∀E 1

3 ¬De for conditional proof

4 Ce for reductio

5 De →E 2, 4

6 ¬De R 3

7 ¬Ce ¬I 4–6

8 (¬De→ ¬Ce) →I 3–7

9 ∀x(¬Dx→ ¬Cx) ∀I 8

Chapter 8 Part D

1. Invalid

2. Valid:

1 ∀x (Px ∧Qx)

2 (Pa ∧Qa) ∀E 1

3 Pa ∧E 2

4 Qa ∧E 2

5 ∀x Px ∀I 3

6 ∀x Qx ∀I 4

7 (∀x Px ∧ ∀x Qx) ∧I 5, 6

solutions for ch. 8 195

3. Valid:

1 (∀x Px ∨ ∀x Qx)

2 ¬(Pa ∨Qa) for reductio

3 ∀x Px for reductio

4 Pa ∀E 3

5 (Pa ∨Qa) ∨I 4

6 ¬(Pa ∨Qa) R 2

7 ¬∀x Px ¬I 3–6

8 ∀x Qx ∨E 7, 1

9 Qa ∀E 8

10 (Pa ∨Qa) ∨I 9

11 ¬(Pa ∨Qa) R 2

12 (Pa ∨Qa) ¬E 2–11

13 ∀x (Px ∨Qx) ∀I 12

4. Valid:

1 (∀x Px ∧ ∀x Qx)

2 ∀x Px ∧E 1

3 ∀x Qx ∧E 1

4 Pa ∀E 2

5 Qa ∀E 3

6 (Pa ∧Qa) ∧I 4, 5

7 ∀x (Px ∧Qx) ∀I 6

196 forallx : SFU

13.9 Chapter 9 Solutions

Chapter 9 Part A

1. The mistake is at step 2: the sentence ∃y Py is not a reiteration of ∃x Px.
2. The mistake is at step 6: the constant k that was used as a proxy cannot

appear outside of the subproof in which it was introduced.
3. The mistake is at step 3: since the constant a is already in force, it cannot

be used as a proxy.
4. The mistake is at step 7: the ∃E rule requires that you cite the step

containing the existential generalization as well as the subproof.

Chapter 9 Part B

1.

1 Da

2 Ca

3 (Ca ∧Da) ∧I 1, 2

4 ∃x(Cx ∧Dx) ∃I 3

2.

1 Da

2 (Da ∨ Ca) ∨I 1

3 ∃x(Dx ∨ Cx) ∃I 2

3.

1 ∃x(Cx ∧Dx)

2 (Cm ∧Dm) for existential instantiation

3 Cm ∧E 2

4 ∃xCx ∃I 3

5 ∃xCx ∃E 1, 2–4

solutions for ch. 9 197

4.

1 ∃x¬Cx

2 ∀x(Dx ∨ Cx)

3 ¬Cm for existential instantiation

4 (Dm ∨ Cm) ∀E 2

5 Dm ∨E 3, 4

6 ∃xDx ∃I 5

7 ∃xDx ∃I 1, 3–6

Chapter 9 Part C

1.

1 ¬Da

2 (∃xCx→ Da)

3 Cb for reductio

4 ∃xCx ∃I 3

5 Da →E 2, 4

6 ¬Da R 1

7 ¬Cb ¬I 3–6

8 ∀x¬Cx ∀I 7

2. This argument is invalid. Let Dx mean ‘x is a dog’ and let Cx mean ‘x is
a cat’. Now let ‘a’ name my pet dog Alvin. The premises state that no
dog is a cat, and that Alvin is not a cat. Both of these are true, but the
conclusion is false: Alvin is a dog.

198 forallx : SFU

Chapter 9 Part D

1.

1 ¬∀x Px

2 ¬∃x¬Px for reductio

3 ¬Pa for reductio

4 ∃x¬Px ∃I 3

5 ¬∃x¬Px R 2

6 Pa ¬E 3–5

7 ∀x Px ∀I 6

8 ¬∀x Px R 1

9 ∃x¬Px ¬E 2–8

2.

1 ¬∃x Px

2 Pa for reductio

3 ∃x Px ∃I 2

4 ¬∃x Px R 1

5 ¬Pa ¬I 2–4

6 ∀x¬Px ∀I 5

solutions for ch. 9 199

Chapter 9 Part E

1.

1 ∃x (Px ∨Qx)

2 (Pa ∨Qa) for existential instantiation

3 ¬(∃x Px ∨ ∃x Qx) for reductio

4 ∃x Px for reductio

5 (∃x Px ∨ ∃x Qx) ∨I 4

6 ¬(∃x Px ∨ ∃x Qx) R 3

7 ¬∃x Px ¬I 4–6

8 Pa for reductio

9 ∃x Px ∃I 8

10 ¬∃x Px R 7

11 ¬Pa ¬I 8–10

12 Qa ∨E 2, 11

13 ∃x Qx for reductio

14 (∃x Px ∨ ∃x Qx) ∨I 13

15 ¬(∃x Px ∨ ∃x Qx) R 3

16 ¬∃x Qx ¬I 13–15

17 ∃x Qx ∃I 12

18 (∃x Px ∨ ∃x Qx) ¬E 3–17

19 (∃x Px ∨ ∃x Qx) ∃E 1, 2–18

200 forallx : SFU

2.

1 (∃x Px ∨ ∃x Qx)

2 ¬∃x (Px ∨Qx) for reductio

3 ∃x Px for reductio

4 Pa for existential instantiation

5 (Pa ∨Qa) ∨I 4

6 ∃x (Px ∨Qx) ∃I 5

7 ∃x (Px ∨Qx) ∃E 3, 4–6

8 ¬∃x (Px ∨Qx) R 2

9 ¬∃x Px ¬I 3–8

10 ∃x Qx ∨E 1, 9

11 Qb for existential instantiation

12 (Pb ∨Qb) ∨I 11

13 ∃x (Px ∨Qx) ∃I 12

14 ∃x (Px ∨Qx) ∃E 10, 11–13

15 ¬∃x (Px ∨Qx) R 2

16 ∃x (Px ∨Qx) ¬E 2–15

3.

1 ∃x (Px ∧Qx)

2 (Pa ∧Qa) for existential instantiation

3 Pa ∧E 2

4 Qa ∧E 2

5 ∃x Px ∃I 3

6 ∃x Qx ∃I 4

7 (∃x Px ∧ ∃x Qx) ∧I 5, 6

8 (∃x Px ∧ ∃x Qx) ∃E 1, 2–7

4. This inference is invalid. Consider the following symbolization key:

solutions for ch. 9 201

UD: Things at a brunch
Px: x is a philosopher
Qx: x is a quince

Here is an FO counterexample. Suppose you’ve invited Phillipa Foot over
for brunch, and in the fruit bowl are some delicious and tart quinces. In
this circumstance, the premise is true: there is a philosopher, and there
is quince. But the conclusion is false: there is no philosopher that’s a
quince.

Chapter 9 Part F

To show that→I is sound in t:

Suppose there is a proof p in t with assumptions A1, ...,Ak that allows
you to derive at step k the sentence (P→ Q) from an application of→I to
an earlier subproof with assumption P and that ends with Q, but where
(P → Q) is not in fact a tautological consequence of the assumptions in
force at k. This means that there is a row in a joint truth table that assigns
a ‘T’ to each of A1, ...,Ak and an ‘F’ to (P → Q). Call this row h . Since
(P→ Q) receives an ‘F’ in h , this means that P receives a ‘T’ and Q receives
an ‘F’ in h . Let step k be the first invalid step in p. Since k is the first
invalid step, the step k − 1 that derives Q from A1, ...,Ak and the further
assumption P is tautologically valid. This means that there is no row that
assigns a ‘T’ to each of A1, ...,Ak and P, and an ‘F’ to Q. But now we’ve
reached a contradiction, since we’ve determined that row h assigns a ‘T’
to each of A1, ...,Ak and P, and an ‘F’ to Q. our initial assumption must
be false: →I cannot be responsible for the first invalid step in p. →I is
therefore sound in t.

202 forallx : SFU

13.10 Chapter 10 Solutions

Chapter 10 Part A

1. All of the black pieces are in front of all the white pieces.
∀x∀y

(
(Bx ∧Wx)→ Fxy

)
2. Some rook is to the left of a knight.
∃x∃y

(
(Rx ∧ Ky) ∧ Lxy

)
3. All white pawns are in the same column.
∀x∀y

[(
(Wx ∧ Px) ∧ (Wy ∧ Py)

)
→ Cxy

]
4. Not all black pawns are in the same column.
¬∀x∀y

[(
(Bx ∧ Px) ∧ (By ∧ Py)

)
→ Cxy

]
5. Every rook is in a different row than every other rook.
∀x∀y

[(
(Rx ∧ Ry) ∧ x , y

)
→ ¬Oxy

]
6. Every pawn is in a different column than every other pawn.
∀x∀y

[(
(Px ∧ Py) ∧ x , y

)
→ ¬Cxy

]
7. Different knights are in the same column.
∃x∃y

[(
(Kx ∧ Ky) ∧ x , y

)
∧ Cxy

]
8. There are no different rooks in the same row.
∀x∀y

[(
(Rx ∧ Ry) ∧Oxy

)
→ x = y

]
Chapter 10 Part B

1. Every pawn is to the left of some rook.
2. There is a pawn with no white rook in its column.
3. No black knight has a white pawn in front of it.
4. Some rook and some pawn aren’t in the same column.
5. There is at least two rooks.
6. There is at least two pieces on the board.
7. If there is some piece in the same column as some piece, then every piece

is in the same row.
8. Every rook in front of every pawn is in the same column as some knight.

Chapter 10 Part C

1. Every green frog is smaller than a brown dog.
∀x
[
(Gx ∧ Fx)→ ∃y

(
(By ∧Dy) ∧ Sxy

)]
2. Some frog is bigger than every mouse.
∃x
(
Fx ∧ ∀y (My→ Ixy)

)
3. Nothing is bigger than everything.
¬∃x∀y Ixy

solutions for ch. 10 203

4. Every frog bigger than every mouse is green.
∀x∀y

[(
(Fx ∧My) ∧ Ixy

)
→ Gx

]
5. Nothing smaller than a frog is bigger than a dog.
¬∃x∃y∃z

(
(Fy ∧Dz) ∧ (Sxy ∧ Ixz)

)
6. Some dog is smaller than some mouse.
∃x∃y

(
(Dx ∧My) ∧ Sxy

)
7. No mouse is bigger than every dog.
∀x∀y

(
(Mx ∧Dy)→ ¬Ixy

)
8. Mighty Mouse is bigger than any other mouse.
∀x
(
(Mx ∧ x , m)→ Imx

)
Chapter 10 Part D

1.

1 ∃y∀x Lyx

2 ∀x Lax for existential instantiation

3 Lab ∀E 2

4 ∃y Lyb ∃I 3

5 ∃y Lyb ∃E 1, 2–4

6 ∀x∃y Lyx ∀I 5

2.

1 ∃x (Dx ∧ ∃y Rxy)

2 ∀x (∃y Rxy→ Cx)

3 (Da ∧ ∃y Ray) for existential instantiation

4 Da ∧E 3

5 (∃y Ray→ Ca) ∀E 2

6 ∃y Ray ∧E 3

7 Ca →E 5, 6

8 ∃x Cx ∃I 7

9 ∃x Cx ∃E 1, 2–8

204 forallx : SFU

3.

1 ∀x
(
Px→ ∃y (Ry ∧ Lxy)

)
2 ∃x Px

3 Pa for existential instantiation

4
(
Pa→ ∃y (Ry ∧ Lay)

)
∀E 1

5 ∃y (Ry ∧ Lay) →E 3, 4

6 (Rb ∧ Lab) for existential instantiation

7 Rb ∧E 6

8 ∃x Rx ∃I 7

9 ∃x Rx ∃E 5, 6–8

10 ∃x Rx ∃E 2, 3–9

solutions for ch. 10 205

4.

1 ∀x
(
Px→ ∀y (Qy→ Ryx)

)
2 ∀x∀y (Rxy→ Txy)

3 Pa for conditional proof

4 Qb for conditional proof

5
(
Pa→ ∀y (Qy→ Rya)

)
∀E 1

6 ∀y (Qy→ Rya) →E 3, 5

7 (Qb→ Rba) ∀E 6

8 ∀y (Rby→ Tby) ∀E 2

9 (Rba→ Tba) ∀E 8

10 Rba →E 4, 7

11 Tba →E 9, 10

12 (Qb→ Tba) →I 4–11

13 ∀y (Qy→ Tya) ∀I 12

14
(
Pa→ ∀y (Qy→ Tya)

)
→I 3–13

15 ∀x
(
Px→ ∀y (Qy→ Tyx)

)
∀I 14

5.

1 ∃x
(
Dx ∧ ¬∀y (Cy→ Bxy)

)
2

(
Da ∧ ¬∀y (Cy→ Bay)

)
for existential instantiation

3 Da ∧E 2

4 ¬∀y (Cy→ Bay) ∧E 2

5 ∀x
(
Dx→ ∀y (Cy→ Bxy)

)
for reductio

6
(
Da→ ∀y (Cy→ Bay)

)
∀E 5

7 ∀y (Cy→ Bay) →E 3, 6

8 ¬∀y (Cy→ Bay) R 4

9 ¬∀x
(
Dx→ ∀y (Cy→ Bxy)

)
¬I 5–8

10 ¬∀x
(
Dx→ ∀y (Cy→ Bxy)

)
∃E 1, 2–9

206 forallx : SFU

13.11 Chapter 11 Solutions

Chapter 11 Part A

Consider the following symbolization key:

UD: Animals at the zoo
Lx: x is a lion.
Rx: x is a rhino.
Sx: x is sleeping.

o: Rodney

The sentences can be translated thusly:

1. There’s a rhino at the zoo.
∃x Rx

2. Rodney is the only rhino at the zoo.(
Ro ∧ ∀x (Rx→ x = o)

)
3. There is only one rhino at the zoo.
∃

(
Rx ∧ ∀y (Ry→ y = x)

)
4. There are at least two lions at the zoo.
∃x∃y

(
(Lx ∧ Ly) ∧ x , y

)
5. There are at most two lions at the zoo.
∀x∀y∀z

[(
(Lx ∧ Ly) ∧ Lz

)
→

(
(x = y ∨ y = z) ∨ x = z

)]
6. There are exactly two lions at the zoo.
∃x∃y

[(
(Lx ∧ Ly

)
∨ x , y) ∧ ∀z

(
Lz→ (z = x ∨ z = y)

)]
7. A lion is sleeping.
∃x (Lx ∧ Sx)

8. The lion is sleeping.
∃x
[
Lx ∧

(
∀y (Ly→ y = x) ∧ Sx

)]
Chapter 11 Part B

1. Ashni is the only partygoer who loves Ben.
2. The only partygoer who loves Ben is Ben himself.
3. At least two partygoers are dancing.
4. The partygoer who loves Ashni isn’t dancing.
5. There are exactly two people at the party.

solutions for ch. 11 207

Chapter 11 Part C

1.

1 ∃x∃y
(
(Px ∧ Py) ∧ x , y

)
2 ∃y

(
(Pa ∧ Py) ∧ a , y

)
for existential instantiation

3
(
(Pa ∧ Pb) ∧ a , b

)
for existential instantiation

4 Pa ∧E 3

5 ∃x Px ∃I 4

6 ∃x Px ∃E 2, 3–5

7 ∃x Px ∃E 1, 2–6

208 forallx : SFU

2.

1 ∃x
[
Px ∧

(
∀y (Py→ y = x) ∧Qx

)]
2

[
Pa ∧

(
∀y (Py→ y = a) ∧Qa

)]
for existential instantiation

3 Pa ∧E 2

4
(
∀y(Py→ y = a) ∧Qa

)
∧E 2

5 ∀y(Py→ y = a) ∧E 4

6 (Pb ∧ Pc) for conditional proof

7 b , c for reductio

8 (Pb→ b = a) ∀E 5

9 (Pc→ c = a) ∀E 5

10 Pb ∧E 6

11 Pc ∧E 6

12 b = a →E 8, 10

13 c = a →E 9, 11

14 c = c =I

15 a = c =E 13, 14

16 b = c =E 12, 15

17 b , c R 7

18 b = c ¬E 7–17

19
(
(Pb ∧ Pc)→ b = c

)
→I 6–18

20 ∀y
(
(Pb ∧ Py)→ b = y

)
∀I 19

21 ∀x∀y
(
(Px ∧ Py)→ x = y

)
∀I 20

22 ∀x∀y
(
(Px ∧ Py)→ x = y

)
∃E 1, 2–21

solutions for ch. 11 209

3.

1 ∀x∀y
(
¬(Tx ∧ Ty) ∨ x = y

)
2 ∃y

(
(Ta ∧ Ty) ∧ a , y

)
for reductio

3
(
(Ta ∧ Tb) ∧ a , b

)
for existential instantiation

4 ∃y
(
(Ta ∧ Ty) ∧ a , y

)
for reductio

5 ∀y
(
¬(Ta ∧ Ty) ∨ a = y

)
∀E 1

6
(
¬(Ta ∧ Tb) ∨ a = b

)
∀E 5

7 a , b ∧E 3

8 ¬(Ta ∧ Tb) ∨E 6, 7

9 (Ta ∧ Tb) ∧E 3

10 ¬∃y
(
(Ta ∧ Ty) ∧ a , y

)
¬I 4–9

11 ¬∃y
(
(Ta ∧ Ty) ∧ a , y

)
∃E 2, 3–10

12 ∃y
(
(Ta ∧ Ty) ∧ a , y

)
R 2

13 ¬∃y
(
(Ta ∧ Ty) ∧ a , y

)
¬I 2–12

14 ∀x¬∃y
(
(Tx ∧ Ty) ∧ x , y

)
∀I 13

210 forallx : SFU

4.

1 ∀x∀y
(
(Ax ∧ Ay)→ x = y

)
2 ∃x∃y

(
(Ax ∧ Ay) ∧ x , y

)
for reductio

3 ∃y
(
(Ab ∧ Ay) ∧ b , y

)
for existential instantiation

4
(
(Ab ∧ Ac) ∧ b , c

)
for existential instantiation

5 ∃x∃y
(
(Ax ∧ Ay) ∧ x , y

)
for reductio

6 ∀y
(
(Ab ∧ Ay)→ b = y)

)
∀E 1

7
(
(Ab ∧ Ac)→ b = c

)
∀E 6

8 Ab ∧E 4

9 Ac ∧E 4

10 (Ab ∧ Ac) ∧I 8, 9

11 b = c →E 7, 10

12 b , c ∧E 4

13 ¬∃x∃y
(
(Ax ∧ Ay) ∧ x , y

)
¬I 5–12

14 ¬∃x∃y
(
(Ax ∧ Ay) ∧ x , y

)
∃E 3, 4–13

15 ¬∃x∃y
(
(Ax ∧ Ay) ∧ x , y

)
∃E 2, 3–14

16 ∃x∃y
(
(Ax ∧ Ay) ∧ x , y

)
R 2

17 ¬∃x∃y
(
(Ax ∧ Ay) ∧ x , y

)
¬I 2–17

solutions for ch. 11 211

5.

1 ∃x
(
Tx ∧ ∀y (Ty→ y = x)

)
2 ∃x∃y

(
(Tx ∧ Ty) ∧ x , y

)
for reductio

3 ∃y
(
(Ta ∧ Ty) ∧ a , y

)
for existential instantiation

4
(
(Ta ∧ Tb) ∧ a , b

)
for existential instantiation

5 (Tc ∧ ∀y
(
Ty→ y = c)

)
for existential instantiation

6 ∃x∃y
(
(Tx ∧ Ty) ∧ x , y

)
for reductio

7 ∀y (Ty→ y = c) ∧E 5

8 (Ta ∧ Tb) ∧E 4

9 (Ta→ a = c) ∀E 7

10 (Tb→ b = c) ∀E 7

11 Ta ∧E 8

12 Tb ∧E 8

13 a = c →E 9, 11

14 b = c →E 10, 12

15 b = b =I

16 c = b =E 14, 15

17 a = b =E 13, 16

18 a , b ∧E 4

19 ¬∃x∃y
(
(Tx ∧ Ty) ∧ x , y

)
¬I 6–18

20 ¬∃x∃y
(
(Tx ∧ Ty) ∧ x , y

)
∃E 1, 5–19

21 ¬∃x∃y
(
(Tx ∧ Ty) ∧ x , y

)
∃E 3, 4–20

22 ¬∃x∃y
(
(Tx ∧ Ty) ∧ x , y

)
∃E 2, 3–21

23 ∃x∃y
(
(Tx ∧ Ty) ∧ x , y

)
R 2

24 ¬∃x∃y
(
(Tx ∧ Ty) ∧ x , y

)
¬I 2–23

In the Introduction to his volume Symbolic Logic,
Charles Lutwidge Dodson advised: “When you
come to any passage you don’t understand, read it
again: if you still don’t understand it, read it again:
if you fail, even after three readings, very likely
your brain is getting a little tired. In that case, put
the book away, and take to other occupations, and
next day, when you come to it fresh, you will very
likely find that it is quite easy.”

The same might be said for this volume, although
readers are forgiven if they take a break for snacks
after two readings.

about the authors:

P.D. Magnus is a professor of philosophy in
Albany, New York. His primary research is in the
philosophy of science.

Thomas Donaldson is an associate professor
of philosophy at Simon Fraser University. His
primary areas of research are in metaphysics,
epistemology, and the philosophy of mathemat-
ics.

Bruno Guindon is a senior lecturer of philosophy
at Simon Fraser University. His primary areas of
research are in practical and epistemic normativ-
ity.

	What is logic?
	Statements
	Inferences
	Evaluating inferences
	Deductive validity
	Arguments with several steps
	Other logical notions
	Validity and logical form
	Practice exercises

	I Truth-functional logic
	Atomic sentences and the Boolean connectives
	Atomic sentences
	Connectives
	Parentheses matter
	Practice exercises

	Truth tables
	Decomposing a statement
	Truth-functional connectives
	Complete truth tables
	Using truth tables
	Practice exercises

	Conditionals
	Introducing the conditional
	Introducing the biconditional
	The truth-functional completeness of the Boolean connectives
	Unless
	Practice exercises

	Introducing proofs
	Rules for conjunction
	Rules for disjunction
	A rule for conditionals
	Rules for identity
	Three more complex examples
	Practice exercises

	Proofs involving conditionals and negation
	Conditionals
	Biconditional
	Negation
	Russian Doll proofs
	Proving tautologies and tautological equivalences
	Practice exercises

	II First-order logic
	Introducing the quantifiers
	Introduction
	The quantifiers
	Universe of discourse
	Translating to FOL
	Picking a UD
	Sentences of FOL
	Satisfaction
	Practice exercises

	Proofs involving universal quantifiers
	Terminology
	Universal elimination
	Universal introduction
	Practice exercises

	Proofs involving existential quantifiers
	Existential introduction
	Existential elimination
	Quantifier equivalences
	Soundness and completeness for FOL
	Proving invalidity
	Practice exercises

	Multiple quantifiers
	The four Aristotelian forms
	Multiple uses of a single quantifier
	Mixed quantifiers
	Order of quantifiers and variables
	Proofs using multiple quantifiers
	Practice exercises

	Numerical quantification
	Numerical statements
	Definite descriptions
	Formal proofs using numerical quantification
	Practice exercises

	Quick reference

	III Solutions
	Solutions to exercises
	Chapter 1 Solutions
	Chapter 2 Solutions
	Chapter 3 Solutions
	Chapter 4 Solutions
	Chapter 5 Solutions
	Chapter 6 Solutions
	Chapter 7 Solutions
	Chapter 8 Solutions
	Chapter 9 Solutions
	Chapter 10 Solutions
	Chapter 11 Solutions

